Revisiting two thiophosphate compounds constituting d^0 transition metal: HfP₂S₆ and d^{10} transition metal: α -Ag₄P₂S₆ as multifunctional materials for combining second harmonic generation response and photocurrent response

Craig Cropek^{a, #}, Bingheng Ji^{a, #}, Arka Sarkar^b, Fei Wang^c, Tajamul Hussain Syed^d, Wei Wei

^d, Sheng-Ping Guo ^e, Jian Wang ^a *

^a Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States

^b Department of Chemistry, Iowa State University, Ames, Iowa, 50011, United States

^c Department of Chemistry, Missouri State University, Springfield, Missouri, 65897, United States

^d Department of Mechanical Engineering, Wichita State University, Wichita, Kansas 67260, United States

^e School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu

225002, P. R. China

[#] equally contributed.

Corresponding author: jian.wang@wichita.edu

Contents

- 1. Figure S1. Powder X-ray diffraction results of HfP₂S₆ with simulated pattern listed.
- 2. Figure S2. Optical microscope photos of selected crystals of HfP_2S_6 (left) and α -Ag₄P₂S₆ (right), the background is a 2 mm scale paper.
- 3. Figure S3. The crystal structures of α -Ag₄P₂S₆ and β -Ag₄P₂S₆.
- 4. Figure S4. High resolution synchrotron X-ray diffraction results of α -Ag₄P₂S₆ together with two polymorphic simulated models
- 5. Figure S5. Lab powder X-ray diffraction results of α -Ag₄P₂S₆ together with theoretical pattern.
- 6. Figure S6. PXRD results of α -Ag₄P₂S₆ and β -Ag₄P₂S₆ samples after DSC treatments compared with theoretical patterns.

- 7. Figure S7. PXRD results of α -Ag₄P₂S₆ samples annealed and quenched at different temperatures. The theoretical patterns are listed at the bottom.
- 8. **Figure S8.** PXRD results of samples synthesized via heating Ag+P+S elements at different temperatures. The theoretical patterns are listed at the bottom.
- 9. Figure S9. Calculated band structure of α -Ag₄P₂S₆ from VASP.
- 10. Figure S10. Calculated band structure of HfP₂S₆ from VASP.
- 11. Figure S11. Density of states of α -Ag₄P₂S₆ calculated by TB-LMTO-ASA.
- 12. Figure S12. Band structure of α -Ag₄P₂S₆ calculated by TB-LMTO-ASA.
- 13. Figure S13. The Kubelka-Munk diffuse reflectance plots of HfP_2S_6 and α -Ag₄P₂S₆.
- 14. Figure S14. Tauc plots for allowed direct and indirect transitions of HfP₂S₆.
- 15. Figure S15. Tauc plots for allowed direct and indirect transitions of α -Ag₄P₂S₆.
- 16. Figure S16. The Kubelka-Munk diffuse reflectance plots of β -Ag₄P₂S₆.
- 17. Figure S17. Tauc plots for allowed direct and indirect transitions of β -Ag₄P₂S₆.
- 18. Figure S18. IR spectrum of HfP_2S_6 , α -Ag₄P₂S₆, and β -Ag₄P₂S₆.
- 19. Figure S19. SHG intensities of HfP_2S_6 and $AgGaS_2$ were measured on variable particle size samples utilizing a 2.09 μ m laser.
- 20. Figure S20. Calculated birefringence of α -Ag₄P₂S₆ versus wavelength of the fundamental light.
- 21. **Figure S21.** Calculated birefringence of HfP₂S₆ versus wavelength of the fundamental light.
- 22. Table S1. LDT measurement results of $Ag_4P_2S_6$ and $AgGaS_2$ @ 1064 nm measured at samples of particle size of 225 μ m.
- 23. Figure S22. Photocurrent density of three samples of α -Ag₄P₂S₆.
- 24. Figure S23. Photocurrent density of two samples of β -Ag₄P₂S₆.
- 25. **Table S2.** Photocurrent response of selected sulfides (ranked by photocurrent density from highest to lowest)

Figure S1. Theoretical and experimental powder XRD patterns of HfP_2S_6 . The intrinsic impurity, HfS_2 , is labeled as a red asterisk.

Figure S2. Optical microscope photos of selected crystals of HfP_2S_6 (left) and α -Ag₄P₂S₆ (right), the background is a 2 mm scale paper.

Figure S3. a) ball-stick model of β-Ag₄P₂S₆ viewed along [100] direction. b) The arrangement of [P₂S₆] motifs within β-Ag₄P₂S₆ viewed along [100] direction, Ag atoms are removed for clarity.
c) ball-stick model of α-Ag₄P₂S₆ viewed along [001] direction. d) The arrangement of [P₂S₆] motifs within Ag₄P₂S₆ viewed along [001] direction, Ag atoms are removed for clarity. Ag: red color, P: black color, S: yellow color.

Figure S4. High resolution synchrotron X-ray diffraction results of α -Ag₄P₂S₆ together with two polymorphic simulated models.

Figure S5. Lab powder X-ray diffraction results of α -Ag₄P₂S₆ together with theoretical pattern.

Figure S6. PXRD results of α -Ag₄P₂S₆ and β -Ag₄P₂S₆ samples after DSC treatments compared with theoretical patterns.

Figure S7. PXRD results of α -Ag₄P₂S₆ samples annealed and quenched at different temperatures. The theoretical patterns are listed at the bottom. The annealing process details: the target crystals were sealed and heated to the target temperature with holding for 10 hours and then quenched in

air. The quenching process detail: the target crystals were sealed and heated to 1173K first then cooled down to the target temperature and then quenched in iced water.

Figure S8. PXRD results of samples synthesized via heating Ag+P+S elements at different temperatures. The theoretical patterns are listed at the bottom.

Figure S9. Calculated band structure of α -Ag₄P₂S₆ from VASP.

Figure S10. Calculated band structure of HfP_2S_6 from VASP.

Figure S12. Band structure of α -Ag₄P₂S₆ calculated by TB-LMTO-ASA.

Figure S13. The Kubelka-Munk diffuse reflectance plots of HfP_2S_6 (black) and α -Ag₄P₂S₆ (blue).

Figure S14. Tauc plots for allowed direct and indirect transitions of HfP_2S_6

Figure S15. Tauc plots for allowed direct and indirect transitions of α -Ag₄P₂S₆.

Figure S16. The Kubelka-Munk diffuse reflectance plots of β -Ag₄P₂S₆.

Figure S17. Tauc plots for allowed direct and indirect transitions of β -Ag₄P₂S₆.

Figure S18. IR spectrum of HfP_2S_6 , α -Ag₄P₂S₆, and β -Ag₄P₂S₆.

Figure S19. SHG intensities of HfP_2S_6 and $AgGaS_2$ were measured on variable particle size samples utilizing a 2.09 μ m laser.

Figure S20. Calculated birefringence of α -Ag₄P₂S₆ versus wavelength of the fundamental light.

Figure S21. Calculated birefringence of HfP_2S_6 versus wavelength of the fundamental light.

Table S1. LDT measurement results of $Ag_4P_2S_6$ and $AgGaS_2$ @ 1064 nm measured at samples of particle size of 225 μ m.

	damage energy	spot diameter	LDT (MW/cm ²)	LDT (× AGS)
	(mJ)	(mm)		
AgGaS ₂	0.58	0.5	29.6	1
α -Ag ₄ P ₂ S ₆	1.85	0.5	94	3.2

Figure S22. Photocurrent density of three samples of α -Ag₄P₂S₆.

Figure S23. Photocurrent density of two samples of β -Ag₄P₂S₆.

Table S2. Photocurrent response of selected sulfides (ranked by photocurrent density from highest to lowest)

Compounds	Photocurrent density	References
$Ba_5Bi_2Co_2S_{10}$	4 mA cm ⁻²	1
KCu ₂ BiS ₃	0.11 mA cm ⁻²	2
$Pb_3P_2S_8$	45 μA cm ⁻²	3
$Ba_3HgGa_2S_7$	12.2 μA cm ⁻²	4
$Rb_2CuSb_7S_{12}$	$10 \ \mu A \ cm^{-2}$	5
$Eu_8In_{17.33}S_{34}$	$1 \ \mu A \ cm^{-2}$	6
CsCuS ₄	0.55 μA cm ⁻²	7
SrCuSbS ₃	0.54 μA cm ⁻²	8
α -Ag ₄ P ₂ S ₆	165 nA cm-2	This work
β -Ag ₄ P ₂ S ₆	135 nA cm ⁻²	This work
$BaCuSbS_3$	55 nA cm ⁻²	9
$Cs_2Ag_2Zn_2S_4$	50 nA cm ⁻²	10
$Rb_2Ba_3Cu_2Sb_2S_{10}$	6 nA cm ⁻²	11
TlHgInS ₃	0.35 nA cm ⁻²	12

References:

- K. Bu, X. Zhang, J. Huang, M. Luo, C. Zheng, R. Wang, D. Wang, J. He, W. Zhao, X. Che and F. Huang, *Chem. Commun. (Camb.)*, 2019, 55, 4809–4812.
- G. Zhang, B. Zhang, H. Chen, X. Zhang, C. Zheng, J. Lin and F. Huang, J. Alloys Compd., 2014, 591, 6–10.
- 3. B. Ji, E. Guderjahn, K. Wu, T. H. Syed, W. Wei, B. Zhang and J. Wang, *Phys. Chem. Chem. Phys.*, 2021, **23**, 23696–23702.
- 4. X. Huang, S.-H. Yang, W. Liu and S.-P. Guo, Inorg. Chem., 2022, 61, 12954–12958.
- Y. Xiao, S.-H. Zhou, R. Yu, Y. Shen, Z. Ma, H. Lin and Y. Liu, *Inorg. Chem.*, 2021, 60, 9263–9267.
- 6. Y. Chi, T.-F. Jiang, H.-G. Xue and S.-P. Guo, Inorg. Chem., 2019, 58, 3574–3577.
- Q.-N. Yan, B.-W. Liu, X.-M. Jiang, J.-X. Zhao, S.-M. Pei, W.-F. Chen and G.-C. Guo, *Dalton Trans.*, 2022, 51, 5561–5566.
- X. Zhang, J. He, R. Wang, K. Bu, J. Li, C. Zheng, J. Lin and F. Huang, Sol. RRL, 2018, 2, 1800021.
- Liu, P. Hou, W. Chai, J. Tian, X. Zheng, Y. Shen, M. Zhi, C. Zhou and Y. Liu, J. Alloys Compd., 2016, 679, 420–425.
- Y. Liu, D. Xuan, Z. Song, L. Geng, B. Zhang and T. Liu, J. Solid State Chem., 2022, 315, 123457.
- 11. C. Liu, Y. Xiao, H. Wang, W. Chai, X. Liu, D. Yan, H. Lin and Y. Liu, *Inorg. Chem.*, 2020, **59**, 1577–1581.
- 12. H. Li, C. D. Malliakas, F. Han, D. Y. Chung and M. G. Kanatzidis, *Chem. Mater.*, 2015, **27**, 5417–5424.