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Figure S1. Theoretical and experimental powder XRD patterns of HfP,S¢. The intrinsic

impurity, HfS,, is labeled as a red asterisk.
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Figure S2. Optical microscope photos of selected crystals of HfP,S¢ (left) and a-Ag,P,S¢ (right),

the background is a 2 mm scale paper.

Figure S3. a) ball-stick model of B-Ag,P,S¢ viewed along [100] direction. b) The arrangement of
[P,S¢] motifs within B-Ag,P,S¢ viewed along [100] direction, Ag atoms are removed for clarity.
c¢) ball-stick model of a-Ag,P,S¢ viewed along [001] direction. d) The arrangement of [P,S¢]
motifs within Ag,P,S¢ viewed along [001] direction, Ag atoms are removed for clarity. Ag: red

color, P: black color, S: yellow color.
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Figure S4. High resolution synchrotron X-ray diffraction results of a-Ag,P,S¢ together with two

polymorphic simulated models.
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Figure SS5. Lab powder X-ray diffraction results of a-Ag,P,S¢ together with theoretical pattern.
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Figure S6. PXRD results of a-AgsP,S¢ and B-AgsP,S¢ samples after DSC treatments compared
with theoretical patterns.
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Figure S7. PXRD results of a-Ag4P,S¢ samples annealed and quenched at different temperatures.
The theoretical patterns are listed at the bottom. The annealing process details: the target crystals
were sealed and heated to the target temperature with holding for 10 hours and then quenched in
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air. The quenching process detail: the target crystals were sealed and heated to 1173K first then
cooled down to the target temperature and then quenched in iced water.
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Figure S8. PXRD results of samples synthesized via heating Ag+P+S elements at different
temperatures. The theoretical patterns are listed at the bottom.
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Figure S9. Calculated band structure of a-Ag4P,S¢ from VASP.
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Figure S10. Calculated band structure of HfP,S4 from VASP.
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Figure S11. Density of states of a-AgsP,Ss calculated by TB-LMTO-ASA.
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Figure S12. Band structure of a-AgsP,Ss calculated by TB-LMTO-ASA.
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Figure S13. The Kubelka-Munk diffuse reflectance plots of HfP,S¢ (black) and a-Ag4P,Se

(blue).
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Figure S14. Tauc plots for allowed direct and indirect transitions of HfP,S¢
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Figure S15. Tauc plots for allowed direct and indirect transitions of a-Ag4P,Se.

Kubelka-Munk Diffuse Reflectance

T T T T T T T T
400 500 600 700 800
Wavelength (nm)

Figure S16. The Kubelka-Munk diffuse reflectance plots of B-AgsP,Se.
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Figure S17. Tauc plots for allowed direct and indirect transitions of -Ag,P,Sg.
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Figure S18. IR spectrum of HfP,Sg, a-Ag,P,Ss, and B-AgsP,Se.
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Figure S19. SHG intensities of HfP,S¢ and AgGaS, were measured on variable particle size
samples utilizing a 2.09 pm laser.
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Figure S20. Calculated birefringence of a-Ag,P,S¢ versus wavelength of the fundamental light.
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Figure S21. Calculated birefringence of HfP,S4 versus wavelength of the fundamental light.

Table S1. LDT measurement results of Ag,P,S¢ and AgGaS, @ 1064 nm measured at samples
of particle size of 225 um.

damage energy | spot diameter LDT (MW/cm?) | LDT (x AGS)
(mJ) (mm)

AgQGaS, 0.58 0.5 29.6 1

a-AgsP,S¢ 1.85 0.5 94 3.2
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Figure S22. Photocurrent density of three samples of a-Ag,P,S.

S19

500



240

— B-Ag,P,S,_sample 1
— B-Ag,P,S,_sample 2

Wi
T 2
Bl

p—

[=))

o
1

il
A AR

120

o0
o
|

TN
J U U UL

Photocurrent density (nA cm'z)

S

L

{
/—

| 5 I : ! I !
100 200 300 400 500

Time (s)
Figure S23. Photocurrent density of two samples of -Ag,P,Ss.

Table S2. Photocurrent response of selected sulfides (ranked by photocurrent density from
highest to lowest)

Compounds Photocurrent density References
Ba5Bi2C02810 4 mA cm™ 1
KCu,BiS; 0.11 mA cm? 2
Pb3P288 45 ].lA cm2 3
Ba;HgGa,S; 12.2 pA cm 4
szClle7Slz 10 I,LA cm2 5
EugIn17.33834 1 },I,A cm2 6
CsCuS, 0.55 A cm™ 7
SrCuSbS; 0.54 pA cm? 8

a-Ag,P,Se 165 nA cm-2 This work

B-AgsP>Se 135 nA cm™ This work
BaCuSbS; 55 nA cm? 9
Cs)AgrZn,Sy 50 nA cm 10
szBag,Cllesz]() 6 nA cm? 11
TIHgInS; 0.35 nA cm? 12
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