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Figure S1. Theoretical and experimental powder XRD patterns of HfP2S6. The intrinsic 

impurity, HfS2, is labeled as a red asterisk.
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Figure S2. Optical microscope photos of selected crystals of HfP2S6 (left) and α-Ag4P2S6 (right), 

the background is a 2 mm scale paper.

Figure S3. a) ball-stick model of β-Ag4P2S6 viewed along [100] direction. b) The arrangement of 

[P2S6] motifs within β-Ag4P2S6 viewed along [100] direction, Ag atoms are removed for clarity. 

c)  ball-stick model of α-Ag4P2S6 viewed along [001] direction. d) The arrangement of [P2S6] 

motifs within Ag4P2S6 viewed along [001] direction, Ag atoms are removed for clarity. Ag: red 

color, P: black color, S: yellow color.
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Figure S4. High resolution synchrotron X-ray diffraction results of α-Ag4P2S6 together with two 

polymorphic simulated models. 
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Figure S5. Lab powder X-ray diffraction results of α-Ag4P2S6 together with theoretical pattern. 
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Figure S6.  PXRD results of α-Ag4P2S6 and β-Ag4P2S6 samples after DSC treatments compared 
with theoretical patterns. 
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Figure S7.  PXRD results of α-Ag4P2S6 samples annealed and quenched at different temperatures. 
The theoretical patterns are listed at the bottom. The annealing process details: the target crystals 
were sealed and heated to the target temperature with holding for 10 hours and then quenched in 
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air. The quenching process detail: the target crystals were sealed and heated to 1173K first then 
cooled down to the target temperature and then quenched in iced water.
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Figure S8.  PXRD results of samples synthesized via heating Ag+P+S elements at different 
temperatures. The theoretical patterns are listed at the bottom. 

Figure S9. Calculated band structure of α-Ag4P2S6 from VASP.

Figure S10. Calculated band structure of HfP2S6 from VASP.
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Figure S11. Density of states of α-Ag4P2S6 calculated by TB-LMTO-ASA.
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Figure S12. Band structure of α-Ag4P2S6 calculated by TB-LMTO-ASA.

Figure S13. The Kubelka-Munk diffuse reflectance plots of HfP2S6 (black) and α-Ag4P2S6 
(blue).

Figure S14. Tauc plots for allowed direct and indirect transitions of HfP2S6
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Figure S15. Tauc plots for allowed direct and indirect transitions of α-Ag4P2S6.

Figure S16. The Kubelka-Munk diffuse reflectance plots of β-Ag4P2S6.
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Figure S17. Tauc plots for allowed direct and indirect transitions of β-Ag4P2S6.
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Figure S18. IR spectrum of HfP2S6, α-Ag4P2S6, and β-Ag4P2S6.
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Figure S19. SHG intensities of HfP2S6 and AgGaS2 were measured on variable particle size 
samples utilizing a 2.09 µm laser.
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Figure S20. Calculated birefringence of α-Ag4P2S6 versus wavelength of the fundamental light.
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Figure S21. Calculated birefringence of HfP2S6 versus wavelength of the fundamental light.

Table S1. LDT measurement results of Ag4P2S6 and AgGaS2 @ 1064 nm measured at samples 
of particle size of 225 µm.

damage energy 

(mJ)

spot diameter 

(mm)

LDT (MW/cm2) LDT (× AGS)

AgGaS2 0.58 0.5 29.6 1

α-Ag4P2S6 1.85 0.5 94 3.2
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Figure S22. Photocurrent density of three samples of α-Ag4P2S6. 
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Figure S23. Photocurrent density of two samples of β-Ag4P2S6. 

Table S2. Photocurrent response of selected sulfides (ranked by photocurrent density from 
highest to lowest)

Compounds Photocurrent density References
Ba5Bi2Co2S10 4 mA cm-2 1

KCu2BiS3 0.11 mA cm-2 2
Pb3P2S8 45 µA cm-2 3

Ba3HgGa2S7 12.2 µA cm-2 4
Rb2CuSb7S12 10 μA cm-2 5
Eu8In17.33S34  1 μA cm-2 6

CsCuS4 0.55 μA cm-2 7
SrCuSbS3 0.54 μA cm-2 8
α-Ag4P2S6 165 nA cm-2 This work
β-Ag4P2S6 135 nA cm-2 This work
BaCuSbS3 55 nA cm-2 9

Cs2Ag2Zn2S4 50 nA cm-2 10
Rb2Ba3Cu2Sb2S10 6 nA cm-2 11

TlHgInS3 0.35 nA cm-2 12
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