Electronic Supplementary Information (ESI)

Two-dimensional Cd₃-based metal-organic frameworks with

halogen bonding sites for the uptake of I₂

Zhi-Hao Zhang,^a Jia-Lu Ge,^b Yan Li,^a Qing Li,^a Pin-Pin Ma,^a Xiao-Yan Tang,^{*b} Wen-Hua Zhang,^{*a}

and David J. Young^c

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. Email: whzhang@suda.edu.cn

^b School of Materials Engineering, Changshu Institute of Technology, Changshu, China. Email: tangxy@cslg.edu.cn

^c College of Engineering, Information Technology & Environment, Charles Darwin University, Darwin, Northern Territory 0810, Australia.

Contents

Fig. S1 The 2D structures of MOFs 1 (a), 2 (b), 3 (c), 4 (d), and a view of MOF 4 (e) showing three consecutive layers that highlights the four 4-PyCN ligands (two from adjacent layers and two coordinated from the same Cd²⁺ of the central layer) that are within the same pore of the central layer. All free solvates, disordered domains, and hydrogen atoms are omitted. The colours of the Fig. S2 Fourier-transform infrared (FT-IR) spectra of MOF 3 (a, black), 3-PyCN (a, red), MOF 4 (b, black), and 4-PyCN (b, red).4 Fig. S3 ¹H NMR spectra of MOFs 2 (a), 3 (b), 4 30min (c), and 4 120min (d) in DMSO- d_6 + 10% D₂SO₄ mix solvent. MOF **4**_30min and **4**_120min denotes MOF **4** immersed into CHCl₃ for 30 min Fig. S4 Thermogravimetric analysis (TGA) curves of MOFs 1 (a), 2 (b), 3 (c) and 4 (d).7 Fig. S5 A comparison of experimental (red) and simulated (black) powder X-ray diffraction (PXRD) Fig. S6 N₂ (77 K) sorption isotherms of MOFs 3 (a) and 4 (b). The blue solid triangle indicate desorption and blue hallow triangle indicate adsorption. P₀ is the saturated vapor pressure of the Fig. S7 Standard ultraviolet-visible spectroscopic (UV-Vis) curve of I₂/n-hexane solution......10 Fig. S8 Structures of MOFs 2 (a), 3 (b) and 4 (c) showing the proximate in-plane N···N separations. All free and coordinated solvates and hydrogen atoms are omitted. Colour codes: Cd (dark magenta), O (red), C (black)......11

Materials	Solvent	Time (h)	Capacity (mg g ⁻¹)	Ref.
MIL-53-NH ₂	cyclohexane	48	170	1
MIL-101-NH ₂	cyclohexane	48	375	1
CAU-1	cyclohexane	48	300	1
ZIF-67@MCF	cyclohexane	10	1630	2
UiO-66-PYDC	cyclohexane	24	1250	3
Th-SINAP-8	cyclohexane	24	258	4
TMU-16-NH ₂	n-hexane	0.5	450	5
ZIF-8	n-hexane	24	900	6
ZIF-A61	n-hexane	24	1140	7
MOF 2	n-hexane	24	54.1	This Work

Table S1 A list of published I_2 adsorbents and MOF 2 as well as their adsorption capacities.

Fig. S1 The 2D structures of MOFs **1** (a), **2** (b), **3** (c), **4** (d), and a view of MOF **4** (e) showing three consecutive layers that highlight the four 4-PyCN ligands (two from adjacent layers and two coordinated from the same Cd²⁺ of the central layer) that are within the same pore of the central layer. All free solvates, disordered domains, and hydrogen atoms are omitted. The colors of the layers are distinguished by bamboo and orange for clarity.

Fig. S2 Fourier-transform infrared (FT-IR) spectra of MOF **3** (a, black), 3-PyCN (a, red), MOF **4** (b, black), and 4-PyCN (b, red).

Fig. S3 ¹H NMR spectra of MOFs **2** (a), **3** (b), **4**_30min (c), and **4**_120min (d) in DMSO- d_6 + 10% D₂SO₄ mix solvent. MOF **4**_30min and **4**_120min denote MOF **4** immersed into CHCl₃ for 30 min and 120 min, respectively.

Fig. S4 Thermogravimetric analysis (TGA) curves of MOFs 1 (a), 2 (b), 3 (c), and 4 (d).

Fig. S5 A comparison of experimental (red) and simulated (black) powder X-ray diffraction (PXRD) patterns of MOFs **1** (a), **2** (b), **3** (c), and **4** (d).

Fig. S6 N_2 (77 K) sorption isotherms of MOFs **3** (a) and **4** (b). The blue solid triangles indicate desorption and the blue hallowed triangles indicate adsorption. P_0 is the saturated vapor pressure of the adsorbates at the measurement temperatures.

Fig. S7 Standard ultraviolet-visible spectroscopic (UV-Vis) curve of I_2/n -hexane solution.

Fig. S8 Structures of MOFs **2** (a), **3** (b), and **4** (c) showing the proximate in-plane N····N separations. All free and coordinated solvates and hydrogen atoms are omitted. Color codes: Cd (dark magenta), O (red), C (black).

References

1. C. Falaise, C. Volkringer, J. Facqueur, T. Bousquet, L. Gasnot and T. Loiseau, *Chem. Commun.*, 2013, **49**, 10320–10322.

2. L. Chen, J.-Y. Qian, D.-D. Zhu, S. Yang, J. Lin, M.-Y. He, Z.-H. Zhang and Q. Chen, *ACS Appl. Nano Mater.*, 2020, **3**, 5390–5398.

3. Z. Wang, Y. Huang, J. Yang, Y. Li, Q. Zhuang and J. Gu, *Dalton Trans.*, 2017, **46**, 7412–7420.

4. Z.-J. Li, Z. Yue, Y. Ju, X. Wu, Y. Ren, S. Wang, Y. Li, Z.-H. Zhang, X. Guo, J. Lin and J.-Q. Wang, *Inorg. Chem.*, 2020, **59**, 4435–4442.

5. V. Safarifard and A. Morsali, *CrystEngComm*, 2014, **16**, 8660–8663.

6. A.-N. Au-Duong and C.-K. Lee, *Mater. Sci. Eng. C*, 2017, **76**, 477–482.

7. Y. R. Lee, X. H. Do, K. Y. Cho, K. Jeong and K.-Y. Baek, ACS Appl. Nano Mater., 2020, **3**, 9852–9861.