Cr(III) supramolecular network composite membrane with high water stability and proton conductivity

Shu-Fang Zhou,^a Hong-Jie Zhang,^a Chen-Xi Zhang^{*ab} and Qing-Lun Wang^{*cd}

Compound	1		
Formula	$C_{18}H_{14}Cr_2N_8O_{10}$		
Mr	606.36		
T/K	113(2)		
Crystal system	Monoclinic		
Space group	$P2_{1}/c$		
<i>a</i> / Å	7.2581(15)		
<i>b</i> / Å	19.176(4)		
<i>c</i> / Å	7.9267(16)		
lpha /°	90		
eta /°	102.24(3)		
$\gamma/^{\circ}$	90		
Z	2		
Volume /Å ³	1078.2(4)		
ho /g cm ⁻³	1.868		
μ /mm ⁻¹	1.087		
F(000)	612.0		
Crystal size /mm ³	0.20×0.18×0.12		
2 <i>θ</i> /°	2.836 to 27.786		
Index ranges	$-9 \le h \le 9$		
	$-25 \le k \le 25$		
	$-10 \le l \le 10$		
Reflections collected	11829		
$R_{(int)}$	0.0530		
Data/ restraints / parameters	2550 / 0/ 172		
GOF on F^2	1.230		
Final <i>R</i> indices $[I \ge 2\delta(I)]$	$R_1 = 0.0847, wR_2 = 0.1656$		
<i>R</i> indices(all data)	$R_1 = 0.0910, wR_2 = 0.1686$		

Table S1. The Crystallographic data for complex 1

Cr(1)-O(9)	1.966(4)
Cr(1)-O(2)	1.989(4)
Cr(1)-N(1)	2.052(4)
Cr(1)-O(9)#1	1.950(3)
Cr(1)-O(3)#1	1.986(4)
Cr(1)-N(4)#1	2.058(4)
Cr(1)-Cr(1)#1	2.9754(18)
O(3)-Cr(1)#1	1.986(4)
O(9)-Cr(1)#1	115.71(9)
N(4)-Cr(1)#1	2.058(4)
O(9)-Cr(1)-O(3)#1	94.98(15)
O(2)-Cr(1)-N(4)#1	94.50(17)
N(1)-Cr(1)-N(4)#1	167.93(18)
O(9)-Cr(1)-N(4)#1	92.55(16)
O(9)#1-Cr(1)-O(9)	81.08(16)
O(9)#1-Cr(1)-O(2)	94.59(16)
O(3)#1-Cr(1)-O(2)	89.99(16)
O(9)#1-Cr(1)-N(1)	95.71(16)
O(3)#1-Cr(1)-N(1)	90.46(17)
O(3)#1-Cr(1)-N(4)#1	79.10(16)
O(9)#1-Cr(1)-O(3)#1	172.90(15)
O(9)#1-Cr(1)-N(4)#1	95.10(16)
O(9)#1-Cr(1)-Cr(1)#1	40.74(11)

 Table S2. Selected bond distances and angles for 1

Symmetry transformations used to generate equivalent atoms:

^{#1 -}x+2,-y,-z+1

materials.				
Materials	Conductivity (S·cm ⁻	Conditions	References	
	1)			
1	1.03×10^{-3}	367K, 98% RH	This work	
$Zn(o\text{-}H_2BrPhIDC)_2(H_2O)_2]\text{-}CH_3CH_2OH\text{-}3H_2O$	1.14×10^{-4}	373K, 98% RH	1s	
$Co(o\text{-}H_2BrPhIDC)_2(H_2O)_2]\text{-}CH_3CH_2OH\text{-}3H_2O$	3.11×10^{-4}	373K, 98% RH	1s	
$Mg(L)(H_2O)_5 \cdot H_2O]$	5.87×10^{-4}	343K, 75% RH	2s	
MHOF1	$7.50 \times 10 - 4$	353K, 98%RH	3s	
MHOF2	3.50×10^{-4}	353K, 98%RH	3s	
${(H_3O)[Tb(BODSDC)-(H_2O)_2]}_n$	6.57×10^{-4}	358K, 95% RH	4s	
$[Cu_{12}(MES)_6(H_2O)_3]_n$	3.63×10^{-5}	333 K, 98% RH	5s	
${[Cu_{12}(MPS)_6(H_2O)_4] \cdot 6H_2O}_n$	$2.75 imes 10^{-5}$	333 K, 98% RH	5s	
ICR-11	4.26×10^{-4}	350 K, 100% RH	6s	

Table S3. Comparison of the proton conductivity values of 1 with other proton conducting

 Table S4. Comparison of the proton conductivity values of 1@CS/PVP-10 with other membranes.

Materials	Conductivity (S·cm-	Conditions	References
	1)		
1@CS/PVP-10	8.64 × 10 ⁻²	363K, 98% RH	This work
MOF-801@PP-60	1.84×10^{-3}	325K, 98% RH	7s
H ₃ PO ₄ @Ni-BDC-PAN	1.05×10^{-2}	353K, 90% RH	8s
1@PVA-10	2.78×10^{-4}	353K, 98% RH	9s
JUC-200@PVA-10	1.25×10^{-3}	323K, 97% RH	10s
Zn-MOF-NH ₃ /Nafion-5	$2.13 imes 10^{-2}$	353K, 98%RH	11s
Naf-1SZM	2.96×10^{-3}	353K, 35%RH	12s
N_U200-10	1.10×10^{-2}	355K, 50% RH	13s
UiO-66-NH ₂ + UiO-66-SO ₃ H/ Nafion-0.6	2.56× 10 ⁻¹	363K, 95%RH	14s
IL-COF-SO3H@SNF-35	2.24× 10 ⁻¹	363K, 100%RH	15s

Figure S1. Decarboxylation of H_4DBPZ taking place and transformation to H_2DBPZ at elevated temperature.

Figure S2. (a) The asymmetric unit of 1; (b) Four kind of hydrogen-bonds of 1; (c) The threedimensional supramolecular network structure of 1; (d) Hydrogen bonds in three-dimensional structure of 1.

Figure S3. Photographic images of (a) pure CS/PVP, (b) 1@CS/PVP-5%, (c) 1@CS/PVP-10%, (c) 1@CS/PVP-15%.

Figure S4. XRD patterns of 1@CS/PVP-10% treated with water at different periods of time.

Figure S5. Area swelling and water uptake of 1@CS/PVP-0%, 1@CS/PVP-5%, 1@CS/PVP-10%, and 1@CS/PVP-15%.

Figure S6. Nyquist plots of 1 at different relative humidity and 299 K

Figure S7. The proton conductivity of 1@CS/PVP-X at 98% RH and 299 K

Figure S8. Proton conductivities of 1@CS/PVP-10% measured at 299 K under 98% RH for 24 h;

Figure S9. Proton conductivities of 1@CS/PVP-10% measured at 363 K under 98% RH for 24 h;

Figure S10. Nyquist plots of 1@CS/PVP-10 at different relative humidity and 299 K

Figure S11. ATR-FT-IR spectra of 1, CS, CS/PVP and 1@CS/PVP-10%

NOTES AND REFERENCE

- 1. W. Chen, L. Zhao, S. Yu, Z. Li, J. Feng and G. Li, *Polyhedron*, 2018, **148**, 100-108.
- 2. W.-H. Wang, Q. Gao, A.-L. Li, Y.-Y. Jia, S.-Y. Zhang, J.-H. Wang, Y.-H. Zhang and X.-H. Bu,

Chinese Chemical Letters, 2018, 29, 336-338.

- 3. S. Chand, S. C. Pal, A. Pal, Y. Ye, Q. Lin, Z. Zhang, S. Xiang and M. C. Das, *Chemistry A European Journal*, 2019, **25**, 1691-1695.
- 4. W. W. Zhang, Y. L. Wang, Q. Liu and Q. Y. Liu, *Inorganic chemistry*, 2018, **57**, 7805-7814.
- 5. J.-M. Li, T.-Y. Xu, Y.-L. Zhao, X.-L. Hu and K.-H. He, *Dalton transactions*, 2021, **50**, 7484-7495.
- M. Kloda, T. Plecháček, S. Ondrušová, P. Brázda, P. Chalupský, J. Rohlíček, J. Demel and J. Hynek, *Inorganic chemistry*, 2022, 61, 7506-7512.
- 7. J. Zhang, H.-J. Bai, Q. Ren, H.-B. Luo, X.-M. Ren, Z.-F. Tian and S. Lu, *ACS applied materials & interfaces*, 2018, **10**, 28656-28663.
- 8. Z. Bai, S. Liu, G. Cheng, G. Wu and Y. Liu, *Microporous and Mesoporous Materials*, 2020, **292**, 109763.
- 9. S.-F. Zhou, G.-M. Wu, T. Lin, C.-X. Zhang and Q.-L. Wang, *CrystEngComm*, 2020, **22**, 2013-2019.
- 10. K. Cai, F. Sun, X. Liang, C. Liu, N. Zhao, X. Zou and G. Zhu, *Journal of Materials Chemistry A*, 2017, **5**, 12943-12950.
- 11. H. Wang, Y. Zhao, Z. Shao, W. Xu, Q. Wu, X. Ding and H. Hou, ACS applied materials & interfaces, 2021, 13, 7485-7497.
- 12. A. Donnadio, R. Narducci, M. Casciola, F. Marmottini, R. D'Amato, M. Jazestani, H. Chiniforoshan and F. Costantino, *ACS applied materials & interfaces*, 2017, **9**, 42239-42246.
- 13. H. A. Patel, N. Mansor, S. Gadipelli, D. J. L. Brett and Z. Guo, ACS applied materials & interfaces, 2016, 8, 30687-30691.
- 14. Z. Rao, B. Tang and P. Wu, ACS applied materials & interfaces, 2017, 9, 22597-22603.
- 15. P. Li, J. Chen and S. Tang, *Chemical Engineering Journal*, 2021, **415**, 129021.