Electronic Supplementary Information (EIS)

Five new multifunctional inorganic-organic hybrids based on Keggin-

type polyoxometalates and 3,5-di(1H-imidazol-1-yl)benzoic acid ligand

Xiao-yang Yu^{a,*}, Yanxin Lv^a, Xiaoyu Weng^a, Jiaqi Geng^a, Yanyan Yang^a, Hua Jin^a, Hao Cui^a, Bo Fu^a, Xiaoshu Qu^{a,*}, Hongfei Shi^a, Xueling Cao^{b,*}

^a Jilin Institute of Chemical Technology, Jilin City, 132022, P. R. China.

^b College of Science, Qiongtai Normal University, Hainan, 571100, P. R.

China.

* Corresponding author.

E-mail address: yangyangyu@jlict.edu.cn; xiaoshuqu@jlict.edu.cn

Fig. S1 XRD patterns of 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e): the simulated XRD pattern,

experimental XRD pattern and immersed in aqueous solutions with different pH values.

Fig. S2 The IR curves of compounds 1-5 and HDIBA.

Fig. S3 The TG curves of compounds 1-5.

Fig. S4 Fluorescent spectra of compounds **3-5** and HDIBA in the solid state at room temperature.

Fig. S5 The relationships between peak currents and scan rates of 2-, 4- and 5-CPEs.

Fig. S6 Amperometric current response of 4-CPE to BrO_3^- in aqueous solution after the addition of various inorganic ions after 6 months.

Fig. S7 Absorption spectra of RhB (a-d), MB (e-h), CV (i-h) and MG (m-p) solutions under 300 W Xe light with full spectrum in the presence of compounds **2-5**.

Fig. S8 Absorption spectra of RhB (40 ppm) after 6 h dark reaction in the presence of compound **1** under 300 W Xe light with full spectrum.

Fig. S9 Cycling experiments of compounds 2 (a), 3 (b), 4 (c) and 5 (d) on photolysis of RhB, MB, CV and MG.

Fig. S10 XRD patterns of **2-5**: the simulated XRD pattern of **2-5**, experimental XRD pattern of **2-5** before and after photocatalytic degradation.

Fig. S11 Adsorption rate plots of RhB (a), MB (b), CV (c) and MG (d) solutions in the absence of light in the presence of compounds **2-5**.

Fig. S12 Absorption spectra of RhB (a), MB (b), CV (c), BR2(d), ABR4 (e) and MO (f) solutions during the adsorption in the presence of compound **1**.

Fig. S13 Recyclability of RhB, MB, CV, BR2 and ABR4 adsorbed by compound 1.

Fig. S14 XRD patterns of 1: the simulated XRD pattern of 1, experimental XRD pattern of 1 before and after absorption.

Fig. S15 The inhibition zones of antibacterial tests of 3 (a), 4 (b) and 5 (c) against *E. coli*; 3 (d), 4 (e) and 5 (f) against *R. solanacearum*; 3 (g), 4 (h) and 5 (i) against *B. subtilis*; 3 (j), 4 (k) and 5 (l) against *C. albicans*.

Table S1. Selected bond lengths (Å) and bond angles (°) for compounds 1-5.

Fig. S1 XRD patterns of **1** (a), **2** (b), **3** (c), **4** (d) and **5** (e): the simulated XRD pattern, experimental XRD pattern and immersed in aqueous solutions with different pH values.

Fig. S2 The IR curves of compounds 1-5 and HDIBA.

Fig. S3 The TG curves of compounds 1-5.

Fig. S4 Fluorescent spectra of compounds **3-5** and HDIBA in the solid state at room temperature.

Fig. S5 The relationships between peak currents and scan rates of 2-, 4- and 5-CPEs.

Fig. S6 Amperometric current response of 4-CPE to BrO_3^- in aqueous solution after the addition of various inorganic ions after 6 months.

Fig. S7 Absorption spectra of RhB (a-d), MB (e-h), CV (i-h) and MG (m-p) solutions under 300 W Xe light with full spectrum in the presence of compounds **2-5**.

Fig. S8 Absorption spectra of RhB (40 ppm) after 6 h dark reaction in the presence of compound 1 under 300 W Xe light with full spectrum.

Fig. S9 Cycling experiments of compounds 2 (a), 3 (b), 4 (c) and 5 (d) on photolysis of RhB, MB, CV and MG.

Fig. S10 XRD patterns of **2-5**: the simulated XRD pattern of **2-5**, experimental XRD pattern of **2-5** before and after photocatalytic degradation.

Fig. S11 Adsorption rate plots of RhB (a), MB (b), CV (c) and MG (d) solutions in the absence of light in the presence of compounds **2-5**.

Fig. S12 Adsorption spectra of RhB (a), MB (b), CV (c), BR2(d), ABR4 (e) and MO (f) solutions during the adsorption in the presence of compound 1.

Fig. S13 Recyclability of RhB, MB, CV, BR2 and ABR4 adsorbed by compound 1.

Fig. S14 XRD patterns of 1: the simulated XRD pattern of 1, experimental XRD pattern of 1 before and after adsorption.

Fig. S15 The inhibition zones of antibacterial tests of 3 (a), 4 (b) and 5 (c) against E. coli; 3 (d), 4 (e) and 5 (f) against R. solanacearum; 3 (g), 4 (h) and 5 (i) against B. subtilis; 3 (j), 4 (k) and 5 (l) against C. albicans.

		1	
Co(1)-N(4)#1	2.070(14)	W(3)-O(20)	1.874(13)
Co(1)-N(1)	2.071(14)	W(3)-O(15)	1.921(14)
Co(1)-O(1W)	2.129(15)	W(3)-O(22)	1.927(14)
Co(1)-O(2)	2.165(13)	W(3)-O(5)	1.930(15)
Co(1)-O(2W)	2.168(15)	W(3)-O(17)	2.481(18)
Co(1)-O(1)	2.213(14)	W(3)-O(8)	2.49(2)
P(1)-O(17)	1.498(19)	W(4)-O(25)	1.689(12)
P(1)-O(17)#2	1.498(19)	W(4)-O(6)	1.844(15)
P(1)-O(8)#2	1.51(2)	W(4)-O(19)	1.884(14)
P(1)-O(8)	1.51(2)	W(4)-O(13)#2	1.914(15)
P(1)-O(26)#2	1.519(19)	W(4)-O(12)#2	1.917(15)
P(1)-O(26)	1.519(19)	W(4)-O(9)	2.496(18)
P(1)-O(9)#2	1.554(18)	W(4)-O(26)#2	2.528(18)
P(1)-O(9)	1.554(18)	W(5)-O(21)	1.786(15)

Table S1 The selected bond lengths (Å) and angles (°) of compounds 1-5.

ElectronicSupplemen	taryMater	rial(ESI)forC	rystEngComm.
Thisjournalis©TheRoy	yalSociet	yofChemistry	2022

W(1)-O(7)	1.677(12)	W(5)-O(18B)	1.87(2)
W(1)-O(18B)#2	1.83(2)	W(5)-O(20)	1.904(13)
W(1)-O(15)	1.916(13)	W(5)-O(6)	1.959(15)
W(1)-O(13)	1.920(15)	W(5)-O(16B)	1.99(2)
W(1)-O(18A)#2	1.94(2)	W(5)-O(16A)	2.00(2)
W(1)-O(11)	1.943(13)	W(5)-O(18A)	2.15(2)
W(1)-O(9)#2	2.434(18)	W(5)-O(8)	2.45(2)
W(1)-O(17)	2.526(18)	W(5)-O(9)	2.470(18)
W(2)-O(23)	1.672(12)	W(6)-O(10)	1.690(12)
W(2)-O(11)	1.855(13)	W(6)-O(16B)	1.75(2)
W(2)-O(5)	1.873(14)	W(6)-O(22)	1.853(16)
W(2)-O(19)	1.894(14)	W(6)-O(12)	1.902(16)
W(2)-O(14)#2	1.904(16)	W(6)-O(14)	1.910(15)
W(2)-O(26)#2	2.463(19)	W(6)-O(16A)	1.96(2)
W(2)-O(17)	2.508(19)	W(6)-O(26)	2.474(18)
W(3)-O(24)	1.704(13)	W(6)-O(8)	2.48(2)
N(4)#1-Co(1)-N(1)	100.1(6)	O(20)-W(3)-O(5)	88.3(7)
N(4)#1-Co(1)-O(1W)	88.1(6)	O(15)-W(3)-O(5)	87.3(6)
N(1)-Co(1)-O(1W)	89.1(6)	O(22)-W(3)-O(5)	156.6(9)
N(4)#1-Co(1)-O(2)	156.0(5)	O(24)-W(3)-O(17)	158.7(7)
N(1)-Co(1)-O(2)	103.8(6)	O(20)-W(3)-O(17)	94.3(7)
O(1W)-Co(1)-O(2)	94.4(5)	O(15)-W(3)-O(17)	64.0(7)
N(4)#1-Co(1)-O(2W)	93.8(7)	O(22)-W(3)-O(17)	92.0(8)
N(1)-Co(1)-O(2W)	90.3(6)	O(5)-W(3)-O(17)	65.1(7)
O(1W)-Co(1)-O(2W)	178.0(7)	O(24)-W(3)-O(8)	161.0(7)
O(2)-Co(1)-O(2W)	84.0(6)	O(20)-W(3)-O(8)	65.8(7)
N(4)#1-Co(1)-O(1)	96.9(5)	O(15)-W(3)-O(8)	92.5(8)
N(1)-Co(1)-O(1)	161.7(6)	O(22)-W(3)-O(8)	64.7(8)
O(1W)-Co(1)-O(1)	84.8(6)	O(5)-W(3)-O(8)	92.9(8)
O(2)-Co(1)-O(1)	59.6(5)	O(17)-W(3)-O(8)	40.1(6)
O(2W)-Co(1)-O(1)	95.2(6)	O(25)-W(4)-O(6)	102.5(7)
O(17)-P(1)-O(17)#2	179.999(3)	O(25)-W(4)-O(19)	103.4(7)
O(17)-P(1)-O(8)#2	111.0(10)	O(6)-W(4)-O(19)	89.0(7)
O(17)#2-P(1)-O(8)#2	69.0(10)	O(25)-W(4)-O(13)#2	100.6(7)
O(17)-P(1)-O(8)	69.0(10)	O(6)-W(4)-O(13)#2	88.8(7)
O(17)#2-P(1)-O(8)	111.0(10)	O(19)-W(4)-O(13)#2	155.9(7)
O(8)#2-P(1)-O(8)	179.999(1)	O(25)-W(4)-O(12)#2	100.2(8)
O(17)-P(1)-O(26)#2	69.9(10)	O(6)-W(4)-O(12)#2	157.2(8)
O(17)#2-P(1)-O(26)#2	110.1(10)	O(19)-W(4)-O(12)#2	86.8(6)
O(8)#2-P(1)-O(26)#2	71.9(10)	O(13)#2-W(4)-O(12)#2	86.1(7)
O(8)-P(1)-O(26)#2	108.1(10)	O(25)-W(4)-O(9)	160.2(6)
O(17)-P(1)-O(26)	110.1(10)	O(6)-W(4)-O(9)	66.3(7)
O(17)#2-P(1)-O(26)	69.9(10)	O(19)-W(4)-O(9)	93.1(7)

ElectronicSupplemen	taryMater	rial(ESI)forC	rystEngComm.
Thisjournalis©TheRoy	yalSociet	yofChemistry	2022

O(8)#2-P(1)-O(26)	108.1(10)	O(13)#2-W(4)-O(9)	64.1(6)
O(8)-P(1)-O(26)	71.9(10)	O(12)#2-W(4)-O(9)	91.5(7)
O(26)#2-P(1)-O(26)	179.999(3)	O(25)-W(4)-O(26)#2	157.3(7)
O(17)-P(1)-O(9)#2	70.0(9)	O(6)-W(4)-O(26)#2	95.4(7)
O(17)#2-P(1)-O(9)#2	110.0(9)	O(19)-W(4)-O(26)#2	62.6(7)
O(8)#2-P(1)-O(9)#2	70.3(10)	O(13)#2-W(4)-O(26)#2	93.7(6)
O(8)-P(1)-O(9)#2	109.7(10)	O(12)#2-W(4)-O(26)#2	62.9(7)
O(26)#2-P(1)-O(9)#2	107.9(10)	O(9)-W(4)-O(26)#2	42.2(6)
O(26)-P(1)-O(9)#2	72.1(10)	O(21)-W(5)-O(18B)	109.0(9)
O(17)-P(1)-O(9)	110.0(9)	O(21)-W(5)-O(20)	101.6(8)
O(17)#2-P(1)-O(9)	70.0(9)	O(18B)-W(5)-O(20)	149.0(9)
O(8)#2-P(1)-O(9)	109.7(10)	O(21)-W(5)-O(6)	100.5(8)
O(8)-P(1)-O(9)	70.3(10)	O(18B)-W(5)-O(6)	88.3(8)
O(26)#2-P(1)-O(9)	72.1(10)	O(20)-W(5)-O(6)	91.0(7)
O(26)-P(1)-O(9)	107.9(10)	O(21)-W(5)-O(16B)	107.9(10)
O(9)#2-P(1)-O(9)	179.999(2)	O(18B)-W(5)-O(16B)	75.1(11)
O(7)-W(1)-O(18B)#2	111.7(10)	O(20)-W(5)-O(16B)	91.2(8)
O(7)-W(1)-O(15)	101.7(8)	O(6)-W(5)-O(16B)	150.4(9)
O(18B)#2-W(1)-O(15)	146.0(10)	O(21)-W(5)-O(16A)	93.9(9)
O(7)-W(1)-O(13)	103.6(7)	O(18B)-W(5)-O(16A)	86.7(10)
O(18B)#2-W(1)-O(13)	91.0(8)	O(20)-W(5)-O(16A)	86.5(8)
O(15)-W(1)-O(13)	87.1(6)	O(6)-W(5)-O(16A)	165.6(9)
O(7)-W(1)-O(18A)#2	91.5(9)	O(16B)-W(5)-O(16A)	16.0(8)
O(18B)#2-W(1)-O(18A)#2	21.2(7)	O(21)-W(5)-O(18A)	91.4(9)
O(15)-W(1)-O(18A)#2	166.7(9)	O(18B)-W(5)-O(18A)	18.6(8)
O(13)-W(1)-O(18A)#2	89.6(7)	O(20)-W(5)-O(18A)	166.9(8)
O(7)-W(1)-O(11)	101.4(7)	O(6)-W(5)-O(18A)	85.4(7)
O(18B)#2-W(1)-O(11)	81.4(8)	O(16B)-W(5)-O(18A)	85.9(10)
O(15)-W(1)-O(11)	86.2(5)	O(16A)-W(5)-O(18A)	93.9(9)
O(13)-W(1)-O(11)	155.0(7)	O(21)-W(5)-O(8)	160.4(8)
O(18A)#2-W(1)-O(11)	91.5(7)	O(18B)-W(5)-O(8)	83.0(9)
O(7)-W(1)-O(9)#2	161.6(7)	O(20)-W(5)-O(8)	66.2(7)
O(18B)#2-W(1)-O(9)#2	56.2(9)	O(6)-W(5)-O(8)	95.1(7)
O(15)-W(1)-O(9)#2	92.7(8)	O(16B)-W(5)-O(8)	59.2(9)
O(13)-W(1)-O(9)#2	65.5(6)	O(16A)-W(5)-O(8)	70.9(8)
O(18A)#2-W(1)-O(9)#2	74.3(8)	O(18A)-W(5)-O(8)	101.5(8)
O(11)-W(1)-O(9)#2	90.8(7)	O(21)-W(5)-O(9)	157.3(8)
O(7)-W(1)-O(17)	157.0(7)	O(18B)-W(5)-O(9)	55.1(9)
O(18B)#2-W(1)-O(17)	83.2(9)	O(20)-W(5)-O(9)	96.7(7)
O(15)-W(1)-O(17)	63.1(7)	O(6)-W(5)-O(9)	65.6(6)
O(13)-W(1)-O(17)	93.2(6)	O(16B)-W(5)-O(9)	84.8(9)
O(18A)#2-W(1)-O(17)	104.4(8)	O(16A)-W(5)-O(9)	100.6(9)
O(11)-W(1)-O(17)	62.3(6)	O(18A)-W(5)-O(9)	70.3(7)

O(9)#2-W(1)-O(17)	41.3(6)	O(8)-W(5)-O(9)	42.0(6)
O(23)-W(2)-O(11)	103.0(7)	O(10)-W(6)-O(16B)	108.3(10)
O(23)-W(2)-O(5)	101.9(9)	O(10)-W(6)-O(22)	101.9(8)
O(11)-W(2)-O(5)	88.8(6)	O(16B)-W(6)-O(22)	93.7(9)
O(23)-W(2)-O(19)	102.8(7)	O(10)-W(6)-O(12)	100.0(7)
O(11)-W(2)-O(19)	154.2(8)	O(16B)-W(6)-O(12)	150.4(10)
O(5)-W(2)-O(19)	87.7(7)	O(22)-W(6)-O(12)	88.5(7)
O(23)-W(2)-O(14)#2	101.5(8)	O(10)-W(6)-O(14)	100.3(8)
O(11)-W(2)-O(14)#2	86.4(7)	O(16B)-W(6)-O(14)	81.3(10)
O(5)-W(2)-O(14)#2	156.6(9)	O(22)-W(6)-O(14)	157.7(9)
O(19)-W(2)-O(14)#2	86.7(7)	O(12)-W(6)-O(14)	85.7(7)
O(23)-W(2)-O(26)#2	159.0(7)	O(10)-W(6)-O(16A)	95.5(9)
O(11)-W(2)-O(26)#2	90.8(7)	O(16B)-W(6)-O(16A)	15.9(9)
O(5)-W(2)-O(26)#2	94.1(8)	O(22)-W(6)-O(16A)	87.2(8)
O(19)-W(2)-O(26)#2	64.0(7)	O(12)-W(6)-O(16A)	164.4(9)
O(14)#2-W(2)-O(26)#2	63.1(7)	O(14)-W(6)-O(16A)	92.7(9)
O(23)-W(2)-O(17)	160.3(7)	O(10)-W(6)-O(26)	156.5(7)
O(11)-W(2)-O(17)	63.6(6)	O(16B)-W(6)-O(26)	86.2(10)
O(5)-W(2)-O(17)	65.2(7)	O(22)-W(6)-O(26)	95.3(8)
O(19)-W(2)-O(17)	91.9(7)	O(12)-W(6)-O(26)	64.3(7)
O(14)#2-W(2)-O(17)	92.3(7)	O(14)-W(6)-O(26)	62.8(7)
O(26)#2-W(2)-O(17)	40.7(6)	O(16A)-W(6)-O(26)	101.3(9)
O(24)-W(3)-O(20)	102.5(8)	O(10)-W(6)-O(8)	161.4(7)
O(24)-W(3)-O(15)	99.9(8)	O(16B)-W(6)-O(8)	60.9(9)
O(20)-W(3)-O(15)	157.6(8)	O(22)-W(6)-O(8)	65.8(8)
O(24)-W(3)-O(22)	101.4(9)	O(12)-W(6)-O(8)	93.7(7)
O(20)-W(3)-O(22)	88.4(6)	O(14)-W(6)-O(8)	93.1(8)
O(15)-W(3)-O(22)	87.0(7)	O(16A)-W(6)-O(8)	70.9(8)
O(24)-W(3)-O(5)	102.0(8)	O(26)-W(6)-O(8)	42.1(6)
	1	2	
Ni(1)-N(8)#1	2.06(2)	W(4)-O(2)	2.40(3)
Ni(1)-N(1)	2.06(2)	W(4)-O(4)	2.41(3)
Ni(1)-O(24)#2	2.09(2)	W(5)-O(23)	1.63(2)
Ni(1)-O(1W)	2.100(19)	W(5)-O(15)	1.86(4)
Ni(1)-N(5)	2.10(2)	W(5)-O(16)	1.88(3)
Ni(1)-O(2W)	2.14(2)	W(5)-O(5)	1.88(2)
W(1)-O(9)	1.69(2)	W(5)-O(11)	1.89(3)
W(1)-O(13)	1.89(3)	W(5)-O(1)	2.40(3)
W(1)-O(10)	1.89(3)	W(5)-O(2)	2.48(3)
W(1)-O(7)	1.90(2)	W(6)-O(18)	1.620(19)
W(1)-O(12)	1.92(3)	W(6)-O(6)	1.87(4)
W(1)-O(4)	2.44(3)	W(6)-O(11)	1.88(3)
W(1)-O(3)	2.44(4)	W(6)-O(13)#2	1.91(3)

W(2)-O(14)	1.66(2)	W(6)-O(21)#2	1.93(3)
W(2)-O(7)	1.84(2)	W(6)-O(1)	2.40(3)
W(2)-O(6)	1.88(4)	W(6)-O(4)#2	2.48(3)
W(2)-O(15)	1.89(4)	W(7)-O(19)	1.64(3)
W(2)-O(8)	1.94(2)	W(7)-O(22)#2	1.90(3)
W(2)-O(1)	2.39(3)	W(7)-O(22)	1.90(3)
W(2)-O(3)	2.49(4)	W(7)-O(16)	1.93(3)
W(3)-O(17)	1.67(3)	W(7)-O(16)#2	1.93(3)
W(3)-O(12)	1.89(2)	W(7)-O(2)#2	2.44(3)
W(3)-O(12)#2	1.89(2)	W(7)-O(2)	2.44(3)
W(3)-O(8)#2	1.89(2)	P(1)-O(2)#2	1.53(4)
W(3)-O(8)	1.89(2)	P(1)-O(2)	1.53(4)
W(3)-O(3)	2.39(4)	P(1)-O(3)#2	1.54(4)
W(3)-O(3)#2	2.39(4)	P(1)-O(3)	1.54(4)
W(4)-O(20)	1.66(2)	P(1)-O(4)	1.54(3)
W(4)-O(10)	1.87(2)	P(1)-O(4)#2	1.54(3)
W(4)-O(21)	1.89(2)	P(1)-O(1)	1.63(3)
W(4)-O(22)	1.90(3)	P(1)-O(1)#2	1.63(3)
W(4)-O(5)	1.908(18)		
N(8)# 1-Ni(1)-N(1)	95.9(9)	O(21)-W(4)-O(4)	67.5(11)
N(8)#1-Ni(1)-O(24)#2	167.1(9)	O(22)-W(4)-O(4)	96.0(13)
N(1)-Ni(1)-O(24)#2	96.1(8)	O(5)-W(4)-O(4)	92.3(10)
N(8)#1-Ni(1)-O(1W)	90.7(8)	O(2)-W(4)-O(4)	41.2(11)
N(1)-Ni(1)-O(1W)	91.1(8)	O(23)-W(5)-O(15)	102.1(15)
O(24)#2-Ni(1)-O(1W)	93.9(7)	O(23)-W(5)-O(16)	99.9(14)
N(8)#1-Ni(1)-N(5)	87.0(10)	O(15)-W(5)-O(16)	158.0(15)
N(1)-Ni(1)-N(5)	97.5(9)	O(23)-W(5)-O(5)	101.6(10)
O(24)#2-Ni(1)-N(5)	86.7(9)	O(15)-W(5)-O(5)	85.6(13)
O(1W)-Ni(1)-N(5)	171.3(8)	O(16)-W(5)-O(5)	89.2(11)
N(8)#1-Ni(1)-O(2W)	87.1(10)	O(23)-W(5)-O(11)	101.8(13)
N(1)-Ni(1)-O(2W)	174.7(9)	O(15)-W(5)-O(11)	88.9(16)
O(24)#2-Ni(1)-O(2W)	81.3(9)	O(16)-W(5)-O(11)	87.3(14)
O(1W)-Ni(1)-O(2W)	84.5(8)	O(5)-W(5)-O(11)	156.5(13)
N(5)-Ni(1)-O(2W)	87.0(9)	O(23)-W(5)-O(1)	157.2(11)
O(9)-W(1)-O(13)	100.7(13)	O(15)-W(5)-O(1)	62.9(13)
O(9)-W(1)-O(10)	102.9(14)	O(16)-W(5)-O(1)	96.3(12)
O(13)-W(1)-O(10)	87.3(13)	O(5)-W(5)-O(1)	94.4(9)
O(9)-W(1)-O(7)	102.1(11)	O(11)-W(5)-O(1)	62.9(13)
O(13)-W(1)-O(7)	157.1(13)	O(23)-W(5)-O(2)	158.0(12)
O(10)-W(1)-O(7)	88.1(11)	O(15)-W(5)-O(2)	92.4(14)
O(9)-W(1)-O(12)	98.7(13)	O(16)-W(5)-O(2)	66.4(12)
O(13)-W(1)-O(12)	90.7(13)	O(5)-W(5)-O(2)	62.7(10)
O(10)-W(1)-O(12)	158.4(15)	O(11)-W(5)-O(2)	94.8(13)

O(7)-W(1)-O(12)	85.5(10)	O(1)-W(5)-O(2)	44.7(11)
O(9)-W(1)-O(4)	160.3(12)	O(18)-W(6)-O(6)	103.9(14)
O(13)-W(1)-O(4)	65.8(13)	O(18)-W(6)-O(11)	105.8(13)
O(10)-W(1)-O(4)	63.7(13)	O(6)-W(6)-O(11)	88.0(16)
O(7)-W(1)-O(4)	92.1(11)	O(18)-W(6)-O(13)#2	96.7(12)
O(12)-W(1)-O(4)	95.9(13)	O(6)-W(6)-O(13)#2	87.8(16)
O(9)-W(1)-O(3)	156.9(13)	O(11)-W(6)-O(13)#2	157.5(15)
O(13)-W(1)-O(3)	94.4(14)	O(18)-W(6)-O(21)#2	99.0(11)
O(10)-W(1)-O(3)	95.2(15)	O(6)-W(6)-O(21)#2	156.9(14)
O(7)-W(1)-O(3)	63.8(12)	O(11)-W(6)-O(21)#2	88.5(13)
O(12)-W(1)-O(3)	63.5(13)	O(13)#2-W(6)-O(21)#2	86.8(12)
O(4)-W(1)-O(3)	42.8(12)	O(18)-W(6)-O(1)	160.0(11)
O(14)-W(2)-O(7)	102.9(11)	O(6)-W(6)-O(1)	61.2(14)
O(14)-W(2)-O(6)	102.4(14)	O(11)-W(6)-O(1)	62.8(12)
O(7)-W(2)-O(6)	154.6(14)	O(13)#2-W(6)-O(1)	95.9(12)
O(14)-W(2)-O(15)	102.4(13)	O(21)#2-W(6)-O(1)	97.2(10)
O(7)-W(2)-O(15)	87.4(14)	O(18)-W(6)-O(4)#2	155.3(11)
O(6)-W(2)-O(15)	88.6(17)	O(6)-W(6)-O(4)#2	92.0(14)
O(14)-W(2)-O(8)	99.8(10)	O(11)-W(6)-O(4)#2	93.4(13)
O(7)-W(2)-O(8)	88.9(10)	O(13)#2-W(6)-O(4)#2	64.7(12)
O(6)-W(2)-O(8)	85.5(14)	O(21)#2-W(6)-O(4)#2	65.5(11)
O(15)-W(2)-O(8)	157.8(13)	O(1)-W(6)-O(4)#2	44.4(11)
O(14)-W(2)-O(1)	156.6(10)	O(19)-W(7)-O(22)#2	98.4(10)
O(7)-W(2)-O(1)	94.8(11)	O(19)-W(7)-O(22)	98.4(10)
O(6)-W(2)-O(1)	61.3(14)	O(22)#2-W(7)-O(22)	163(2)
O(15)-W(2)-O(1)	62.8(13)	O(19)-W(7)-O(16)	99.5(10)
O(8)-W(2)-O(1)	95.8(10)	O(22)#2-W(7)-O(16)	89.1(14)
O(14)-W(2)-O(3)	158.0(12)	O(22)-W(7)-O(16)	88.1(13)
O(7)-W(2)-O(3)	63.3(12)	O(19)-W(7)-O(16)#2	99.5(10)
O(6)-W(2)-O(3)	92.1(15)	O(22)#2-W(7)-O(16)#2	88.1(13)
O(15)-W(2)-O(3)	94.3(15)	O(22)-W(7)-O(16)#2	89.1(14)
O(8)-W(2)-O(3)	64.6(12)	O(16)-W(7)-O(16)#2	160.9(19)
O(1)-W(2)-O(3)	45.4(12)	O(19)-W(7)-O(2)#2	158.2(8)
O(17)-W(3)-O(12)	99.9(12)	O(22)#2-W(7)-O(2)#2	65.5(13)
O(17)-W(3)-O(12)#2	99.9(12)	O(22)-W(7)-O(2)#2	98.2(13)
O(12)-W(3)-O(12)#2	160(2)	O(16)-W(7)-O(2)#2	95.0(13)
O(17)-W(3)-O(8)#2	99.7(8)	O(16)#2-W(7)-O(2)#2	66.8(12)
O(12)-W(3)-O(8)#2	87.9(11)	O(19)-W(7)-O(2)	158.2(8)
O(12)#2-W(3)-O(8)#2	88.8(10)	O(22)#2-W(7)-O(2)	98.2(13)
O(17)-W(3)-O(8)	99.7(8)	O(22)-W(7)-O(2)	65.5(13)
O(12)-W(3)-O(8)	88.8(10)	O(16)-W(7)-O(2)	66.8(12)
O(12)#2-W(3)-O(8)	87.9(11)	O(16)#2-W(7)-O(2)	95.0(13)
O(8)#2-W(3)-O(8)	160.5(15)	O(2)#2-W(7)-O(2)	43.6(16)

ElectronicSupplemen	taryMateria	al(ESI)forCi	rystEngComm.
Thisjournalis©TheRo	yalSociety	ofChemistry	2022

O(17)-W(3)-O(3)	159.4(9)	O(2)#2-P(1)-O(2)	73(3)
O(12)-W(3)-O(3)	65.0(14)	O(2)#2-P(1)-O(3)#2	111(2)
O(12)#2-W(3)-O(3)	95.8(15)	O(2)-P(1)-O(3)#2	177(2)
O(8)#2-W(3)-O(3)	93.9(12)	O(2)#2-P(1)-O(3)	177(2)
O(8)-W(3)-O(3)	67.4(12)	O(2)-P(1)-O(3)	111(2)
O(17)-W(3)-O(3)#2	159.4(9)	O(3)#2-P(1)-O(3)	66(3)
O(12)-W(3)-O(3)#2	95.7(15)	O(2)#2-P(1)-O(4)	111.6(18)
O(12)#2-W(3)-O(3)#2	65.0(14)	O(2)-P(1)-O(4)	66.9(17)
O(8)#2-W(3)-O(3)#2	67.4(12)	O(3)#2-P(1)-O(4)	111(2)
O(8)-W(3)-O(3)#2	93.9(12)	O(3)-P(1)-O(4)	70.6(19)
O(3)-W(3)-O(3)#2	41.2(19)	O(2)#2-P(1)-O(4)#2	66.9(17)
O(20)-W(4)-O(10)	101.9(17)	O(2)-P(1)-O(4)#2	111.6(18)
O(20)-W(4)-O(21)	98.9(12)	O(3)#2-P(1)-O(4)#2	70.6(19)
O(10)-W(4)-O(21)	88.7(11)	O(3)-P(1)-O(4)#2	111(2)
O(20)-W(4)-O(22)	98.6(15)	O(4)-P(1)-O(4)#2	178(3)
O(10)-W(4)-O(22)	159.4(16)	O(2)#2-P(1)-O(1)	107.9(17)
O(21)-W(4)-O(22)	89.7(12)	O(2)-P(1)-O(1)	72.1(16)
O(20)-W(4)-O(5)	101.8(11)	O(3)#2-P(1)-O(1)	107.0(19)
O(10)-W(4)-O(5)	86.4(10)	O(3)-P(1)-O(1)	73.0(18)
O(21)-W(4)-O(5)	159.3(10)	O(4)-P(1)-O(1)	108.6(17)
O(22)-W(4)-O(5)	87.9(11)	O(4)#2-P(1)-O(1)	71.4(17)
O(20)-W(4)-O(2)	158.8(14)	O(2)#2-P(1)-O(1)#2	72.1(16)
O(10)-W(4)-O(2)	93.5(15)	O(2)-P(1)-O(1)#2	107.9(17)
O(21)-W(4)-O(2)	95.9(11)	O(3)#2-P(1)-O(1)#2	73.0(18)
O(22)-W(4)-O(2)	66.3(13)	O(3)-P(1)-O(1)#2	107.0(19)
O(5)-W(4)-O(2)	64.3(10)	O(4)-P(1)-O(1)#2	71.4(17)
O(20)-W(4)-O(4)	160.0(14)	O(4)#2-P(1)-O(1)#2	108.6(17)
O(10)-W(4)-O(4)	64.5(14)	O(1)-P(1)-O(1)#2	180(3)
		3	
Ag(1)-N(1)	2.136(9)	W(6)-O(23)	1.907(7)
Ag(1)-N(5)	2.149(9)	W(6)-O(40)	1.911(7)
Ag(1)-O(35)	2.857(7)	W(6)-O(34)	1.915(7)
Ag(1)-O(32)	3.052(7)	W(6)-O(36)	2.438(7)
P(1)-O(36)	1.532(8)	W(7)-O(24)	1.676(7)
P(1)-O(4)	1.532(7)	W(7)-O(25)	1.883(8)
P(1)-O(3)	1.540(7)	W(7)-O(12)	1.910(7)
P(1)-O(2)	1.542(7)	W(7)-O(27)	1.931(7)
W(1)-O(5)	1.705(7)	W(7)-O(26)	1.935(7)
W(1)-O(6)	1.899(7)	W(7)-O(36)	2.445(7)
W(1)-O(8)	1.901(7)	W(8)-O(28)	1.680(7)
W(1)-O(9)	1.907(8)	W(8)-O(29)	1.907(8)
W(1)-O(7)	1.909(8)	W(8)-O(25)	1.910(8)

ElectronicSupplemen	taryMateria	al(ESI)forCi	rystEngComm.
Thisjournalis©TheRo	yalSocietyo	ofChemistry	/2022

W(1)-O(4)	2.431(7)	W(8)-O(15)	1.918(7)
W(2)-O(14)	1.693(7)	W(8)-O(30)	1.929(7)
W(2)-O(13)	1.885(8)	W(8)-O(3)	2.443(7)
W(2)-O(7)	1.906(8)	W(9)-O(31)	1.686(8)
W(2)-O(15)	1.910(7)	W(9)-O(19)	1.901(8)
W(2)-O(16)	1.924(8)	W(9)-O(1)	1.910(7)
W(2)-O(3)	2.432(6)	W(9)-O(16)	1.910(8)
W(3)-O(10)	1.686(8)	W(9)-O(29)	1.931(7)
W(3)-O(12)	1.910(7)	W(9)-O(3)	2.439(7)
W(3)-O(6)	1.911(7)	W(10)-O(33)	1.698(7)
W(3)-O(34)	1.913(8)	W(10)-O(22)	1.896(7)
W(3)-O(13)	1.921(8)	W(10)-O(40)	1.903(7)
W(3)-O(36)	2.439(7)	W(10)-O(37)	1.904(8)
W(4)-O(17)	1.681(8)	W(10)-O(38)	1.934(7)
W(4)-O(20)	1.897(7)	W(10)-O(2)	2.447(7)
W(4)-O(19)	1.901(8)	W(11)-O(32)	1.695(7)
W(4)-O(18)	1.918(7)	W(11)-O(26)	1.869(7)
W(4)-O(8)	1.923(7)	W(11)-O(30)	1.896(7)
W(4)-O(4)	2.431(7)	W(11)-O(38)	1.921(7)
W(5)-O(21)	1.681(8)	W(11)-O(35)	1.940(7)
W(5)-O(23)	1.905(7)	W(11)-O(2)	2.398(7)
W(5)-O(22)	1.907(7)	W(12)-O(11)	1.686(8)
W(5)-O(18)	1.915(8)	W(12)-O(1)	1.896(7)
W(5)-O(9)	1.928(7)	W(12)-O(20)	1.899(8)
W(5)-O(4)	2.454(7)	W(12)-O(35)	1.921(7)
W(6)-O(39)	1.689(8)	W(12)-O(37)	1.937(8)
W(6)-O(27)	1.907(7)	W(12)-O(2)	2.455(7)
N(1)-Ag(1)-N(5)	178.8(4)	O(40)-W(6)-O(34)	155.5(3)
N(1)-Ag(1)-O(35)	86.1(3)	O(39)-W(6)-O(36)	170.2(3)
N(5)-Ag(1)-O(35)	92.8(3)	O(27)-W(6)-O(36)	71.7(3)
N(1)-Ag(1)-O(32)	99.0(3)	O(23)-W(6)-O(36)	83.7(3)
N(5)-Ag(1)-O(32)	80.7(3)	O(40)-W(6)-O(36)	84.0(3)
O(35)-Ag(1)-O(32)	55.3(2)	O(34)-W(6)-O(36)	71.9(3)
O(36)-P(1)-O(4)	109.7(4)	O(24)-W(7)-O(25)	103.5(4)
O(36)-P(1)-O(3)	109.5(4)	O(24)-W(7)-O(12)	102.2(4)
O(4)-P(1)-O(3)	109.6(4)	O(25)-W(7)-O(12)	89.7(3)
O(36)-P(1)-O(2)	109.1(4)	O(24)-W(7)-O(27)	101.3(4)
O(4)-P(1)-O(2)	109.7(4)	O(25)-W(7)-O(27)	155.1(3)
O(3)-P(1)-O(2)	109.3(4)	O(12)-W(7)-O(27)	87.7(3)
O(5)-W(1)-O(6)	101.7(3)	O(24)-W(7)-O(26)	102.8(3)
O(5)-W(1)-O(8)	103.2(3)	O(25)-W(7)-O(26)	86.3(3)

O(6)-W(1)-O(8)	155.1(3)	O(12)-W(7)-O(26)	154.9(3)
O(5)-W(1)-O(9)	99.5(3)	O(27)-W(7)-O(26)	85.7(3)
O(6)-W(1)-O(9)	88.0(3)	O(24)-W(7)-O(36)	170.3(3)
O(8)-W(1)-O(9)	87.4(3)	O(25)-W(7)-O(36)	84.5(3)
O(5)-W(1)-O(7)	103.9(3)	O(12)-W(7)-O(36)	72.1(3)
O(6)-W(1)-O(7)	85.5(3)	O(27)-W(7)-O(36)	71.1(3)
O(8)-W(1)-O(7)	89.0(3)	O(26)-W(7)-O(36)	82.9(3)
O(9)-W(1)-O(7)	156.5(3)	O(28)-W(8)-O(29)	101.7(4)
O(5)-W(1)-O(4)	170.3(3)	O(28)-W(8)-O(25)	103.1(4)
O(6)-W(1)-O(4)	83.1(3)	O(29)-W(8)-O(25)	155.2(3)
O(8)-W(1)-O(4)	72.2(3)	O(28)-W(8)-O(15)	102.3(3)
O(9)-W(1)-O(4)	72.0(3)	O(29)-W(8)-O(15)	88.4(3)
O(7)-W(1)-O(4)	84.8(3)	O(25)-W(8)-O(15)	88.1(3)
O(14)-W(2)-O(13)	103.4(4)	O(28)-W(8)-O(30)	102.6(3)
O(14)-W(2)-O(7)	102.7(3)	O(29)-W(8)-O(30)	88.1(3)
O(13)-W(2)-O(7)	86.2(3)	O(25)-W(8)-O(30)	84.8(3)
O(14)-W(2)-O(15)	100.5(3)	O(15)-W(8)-O(30)	155.0(3)
O(13)-W(2)-O(15)	88.8(3)	O(28)-W(8)-O(3)	171.3(3)
O(7)-W(2)-O(15)	156.8(3)	O(29)-W(8)-O(3)	71.9(3)
O(14)-W(2)-O(16)	101.4(4)	O(25)-W(8)-O(3)	83.7(3)
O(13)-W(2)-O(16)	155.2(3)	O(15)-W(8)-O(3)	72.1(3)
O(7)-W(2)-O(16)	87.9(3)	O(30)-W(8)-O(3)	83.3(3)
O(15)-W(2)-O(16)	87.2(3)	O(31)-W(9)-O(19)	103.4(4)
O(14)-W(2)-O(3)	169.7(3)	O(31)-W(9)-O(1)	103.2(4)
O(13)-W(2)-O(3)	84.2(3)	O(19)-W(9)-O(1)	85.1(3)
O(7)-W(2)-O(3)	84.5(3)	O(31)-W(9)-O(16)	101.5(4)
O(15)-W(2)-O(3)	72.4(3)	O(19)-W(9)-O(16)	89.0(3)
O(16)-W(2)-O(3)	71.2(3)	O(1)-W(9)-O(16)	155.3(3)
O(10)-W(3)-O(12)	102.4(4)	O(31)-W(9)-O(29)	101.7(4)
O(10)-W(3)-O(6)	103.0(4)	O(19)-W(9)-O(29)	155.0(3)
O(12)-W(3)-O(6)	154.5(3)	O(1)-W(9)-O(29)	88.2(3)
O(10)-W(3)-O(34)	101.9(4)	O(16)-W(9)-O(29)	87.1(3)
O(12)-W(3)-O(34)	88.0(3)	O(31)-W(9)-O(3)	170.1(3)
O(6)-W(3)-O(34)	88.6(3)	O(19)-W(9)-O(3)	83.7(3)
O(10)-W(3)-O(13)	103.2(4)	O(1)-W(9)-O(3)	84.2(3)
O(12)-W(3)-O(13)	87.3(3)	O(16)-W(9)-O(3)	71.3(3)
O(6)-W(3)-O(13)	85.1(3)	O(29)-W(9)-O(3)	71.6(3)
O(34)-W(3)-O(13)	154.8(3)	O(33)-W(10)-O(22)	102.7(3)
O(10)-W(3)-O(36)	171.6(3)	O(33)-W(10)-O(40)	103.1(4)
O(12)-W(3)-O(36)	72.2(3)	O(22)-W(10)-O(40)	86.2(3)
O(6)-W(3)-O(36)	82.7(3)	O(33)-W(10)-O(37)	101.5(4)

O(34)-W(3)-O(36)	71 9(3)	O(22)-W(10)-O(37)	89 9(3)
Q(13)-W(3)-Q(36)	83.2(3)	O(40)-W(10)-O(37)	155.4(3)
O(17)-W(4)-O(20)	102.7(4)	O(33)-W(10)-O(38)	100.3(3)
O(17)-W(4)-O(19)	102.2(4)	O(22)-W(10)-O(38)	156.9(3)
O(20)-W(4)-O(19)	85.7(3)	O(40)-W(10)-O(38)	87.3(3)
O(17)-W(4)-O(18)	102.6(4)	O(37)-W(10)-O(38)	86.9(3)
O(20)-W(4)-O(18)	88.8(3)	O(33)-W(10)-O(2)	169.8(3)
O(19)-W(4)-O(18)	155.2(3)	O(22)-W(10)-O(2)	85.7(3)
O(17)-W(4)-O(8)	101.3(4)	O(40)-W(10)-O(2)	83.0(3)
O(20)-W(4)-O(8)	156.0(3)	O(37)-W(10)-O(2)	72.5(3)
O(19)-W(4)-O(8)	88.0(3)	O(38)-W(10)-O(2)	71.6(3)
O(18)-W(4)-O(8)	87.4(3)	O(32)-W(11)-O(26)	105.1(3)
O(17)-W(4)-O(4)	171.0(3)	O(32)-W(11)-O(30)	101.6(3)
O(20)-W(4)-O(4)	84.4(3)	O(26)-W(11)-O(30)	87.0(3)
O(19)-W(4)-O(4)	83.6(3)	O(32)-W(11)-O(38)	100.7(3)
O(18)-W(4)-O(4)	71.7(3)	O(26)-W(11)-O(38)	89.3(3)
O(8)-W(4)-O(4)	71.9(3)	O(30)-W(11)-O(38)	157.6(3)
O(21)-W(5)-O(23)	103.6(4)	O(32)-W(11)-O(35)	97.9(3)
O(21)-W(5)-O(22)	102.3(4)	O(26)-W(11)-O(35)	157.0(3)
O(23)-W(5)-O(22)	86.5(3)	O(30)-W(11)-O(35)	88.3(3)
O(21)-W(5)-O(18)	101.6(4)	O(38)-W(11)-O(35)	86.6(3)
O(23)-W(5)-O(18)	154.8(3)	O(32)-W(11)-O(2)	168.4(3)
O(22)-W(5)-O(18)	88.1(3)	O(26)-W(11)-O(2)	84.8(3)
O(21)-W(5)-O(9)	101.8(4)	O(30)-W(11)-O(2)	84.7(3)
O(23)-W(5)-O(9)	88.8(3)	O(38)-W(11)-O(2)	72.9(3)
O(22)-W(5)-O(9)	155.9(3)	O(35)-W(11)-O(2)	72.4(3)
O(18)-W(5)-O(9)	86.2(3)	O(11)-W(12)-O(1)	103.4(4)
O(21)-W(5)-O(4)	169.9(3)	O(11)-W(12)-O(20)	103.5(4)
O(23)-W(5)-O(4)	83.8(3)	O(1)-W(12)-O(20)	86.1(3)
O(22)-W(5)-O(4)	84.9(3)	O(11)-W(12)-O(35)	101.0(4)
O(18)-W(5)-O(4)	71.3(3)	O(1)-W(12)-O(35)	89.1(3)
O(9)-W(5)-O(4)	71.1(3)	O(20)-W(12)-O(35)	155.5(3)
O(39)-W(6)-O(27)	100.8(4)	O(11)-W(12)-O(37)	100.7(4)
O(39)-W(6)-O(23)	104.0(4)	O(1)-W(12)-O(37)	155.9(3)
O(27)-W(6)-O(23)	155.2(3)	O(20)-W(12)-O(37)	88.5(3)
O(39)-W(6)-O(40)	102.4(4)	O(35)-W(12)-O(37)	86.2(3)
O(27)-W(6)-O(40)	88.8(3)	O(11)-W(12)-O(2)	169.2(3)
O(23)-W(6)-O(40)	85.5(3)	O(1)-W(12)-O(2)	84.3(3)
O(39)-W(6)-O(34)	102.1(4)	O(20)-W(12)-O(2)	84.3(3)
O(27)-W(6)-O(34)	87.7(3)	O(35)-W(12)-O(2)	71.3(3)
O(23)-W(6)-O(34)	87.6(3)	O(37)-W(12)-O(2)	71.8(3)

4				
Ag(1)-N(1)	2.127(5)	Mo(6)-O(32)	1.862(4)	
Ag(1)-N(5)	2.132(5)	Mo(6)-O(28)	1.979(4)	
Ag(1)-O(35)	2.853(4)	Mo(6)-O(31)	1.990(4)	
Ag(1)-O(12)	3.114(4)	Mo(6)-O(2)	2.451(3)	
P(1)-O(4)	1.526(4)	Mo(7)-O(26)	1.681(4)	
P(1)-O(2)	1.529(3)	Mo(7)-O(24)	1.847(4)	
P(1)-O(1)	1.535(3)	Mo(7)-O(6)	1.855(4)	
P(1)-O(3)	1.540(3)	Mo(7)-O(38)	1.980(4)	
Mo(1)-O(10)	1.687(3)	Mo(7)-O(34)	1.986(4)	
Mo(1)-O(13)	1.862(4)	Mo(7)-O(4)	2.447(3)	
Mo(1)-O(25)	1.886(4)	Mo(8)-O(11)	1.672(4)	
Mo(1)-O(22)	1.933(4)	Mo(8)-O(31)	1.846(4)	
Mo(1)-O(7)	1.958(4)	Mo(8)-O(29)	1.909(3)	
Mo(1)-O(1)	2.416(3)	Mo(8)-O(9)	1.920(4)	
Mo(2)-O(23)	1.678(4)	Mo(8)-O(20)	1.978(4)	
Mo(2)-O(40)	1.834(4)	Mo(8)-O(2)	2.440(3)	
Mo(2)-O(9)	1.907(4)	Mo(9)-O(21)	1.668(4)	
Mo(2)-O(25)	1.945(4)	Mo(9)-O(20)	1.839(4)	
Mo(2)-O(32)	1.986(4)	Mo(9)-O(5)	1.870(4)	
Mo(2)-O(2)	2.422(3)	Mo(9)-O(18)	1.981(4)	
Mo(3)-O(14)	1.674(4)	Mo(9)-O(6)	1.983(4)	
Mo(3)-O(34)	1.861(4)	Mo(9)-O(4)	2.430(3)	
Mo(3)-O(7)	1.866(4)	Mo(10)-O(16)	1.673(4)	
Mo(3)-O(5)	1.960(4)	Mo(10)-O(28)	1.850(4)	
Mo(3)-O(40)	1.990(4)	Mo(10)-O(35)	1.875(4)	
Mo(3)-O(4)	2.438(3)	Mo(10)-O(8)	1.950(4)	
Mo(4)-O(17)	1.669(4)	Mo(10)-O(27)	2.008(4)	
Mo(4)-O(8)	1.852(4)	Mo(10)-O(3)	2.456(3)	
Mo(4)-O(36)	1.867(4)	Mo(11)-O(15)	1.681(4)	
Mo(4)-O(13)	1.972(4)	Mo(11)-O(27)	1.845(4)	
Mo(4)-O(37)	1.984(4)	Mo(11)-O(39)	1.879(4)	
Mo(4)-O(1)	2.424(3)	Mo(11)-O(30)	1.951(3)	
Mo(5)-O(19)	1.676(4)	Mo(11)-O(24)	1.981(4)	
Mo(5)-O(38)	1.846(4)	Mo(11)-O(3)	2.447(3)	
Mo(5)-O(22)	1.907(4)	Mo(12)-O(12)	1.688(3)	
Mo(5)-O(39)	1.926(4)	Mo(12)-O(18)	1.842(4)	
Mo(5)-O(36)	1.981(4)	Mo(12)-O(30)	1.899(3)	
Mo(5)-O(1)	2.457(3)	Mo(12)-O(29)	1.913(4)	
Mo(6)-O(33)	1.671(4)	Mo(12)-O(35)	1.981(4)	

rinojournanoernortoy	aloobletyorone	11113Cl y 2022	
Mo(6)-O(37)	1.840(4)	Mo(12)-O(3)	2.391(3)
N(1)-Ag(1)-N(5)	178.93(18)	O(28)-Mo(6)-O(31)	83.10(15)
N(1)-Ag(1)-O(35)	92.83(14)	O(33)-Mo(6)-O(2)	170.82(17)
N(5)-Ag(1)-O(35)	86.09(15)	O(37)-Mo(6)-O(2)	84.72(14)
N(1)-Ag(1)-O(12)	80.46(15)	O(32)-Mo(6)-O(2)	72.91(14)
N(5)-Ag(1)-O(12)	98.95(15)	O(28)-Mo(6)-O(2)	82.62(14)
O(35)-Ag(1)-O(12)	54.70(10)	O(31)-Mo(6)-O(2)	71.45(13)
O(4)-P(1)-O(2)	109.70(19)	O(26)-Mo(7)-O(24)	102.6(2)
O(4)-P(1)-O(1)	109.80(19)	O(26)-Mo(7)-O(6)	101.45(19)
O(2)-P(1)-O(1)	109.24(19)	O(24)-Mo(7)-O(6)	95.04(16)
O(4)-P(1)-O(3)	109.36(19)	O(26)-Mo(7)-O(38)	103.15(18)
O(2)-P(1)-O(3)	109.79(19)	O(24)-Mo(7)-O(38)	84.92(15)
O(1)-P(1)-O(3)	108.93(19)	O(6)-Mo(7)-O(38)	154.79(16)
O(10)-Mo(1)-O(13)	103.91(17)	O(26)-Mo(7)-O(34)	100.69(19)
O(10)-Mo(1)-O(25)	103.00(17)	O(24)-Mo(7)-O(34)	155.79(16)
O(13)-Mo(1)-O(25)	92.31(16)	O(6)-Mo(7)-O(34)	86.55(16)
O(10)-Mo(1)-O(22)	98.68(16)	O(38)-Mo(7)-O(34)	83.59(15)
O(13)-Mo(1)-O(22)	88.29(16)	O(26)-Mo(7)-O(4)	170.65(17)
O(25)-Mo(1)-O(22)	157.48(15)	O(24)-Mo(7)-O(4)	85.47(14)
O(10)-Mo(1)-O(7)	99.93(17)	O(6)-Mo(7)-O(4)	72.89(14)
O(13)-Mo(1)-O(7)	156.05(15)	O(38)-Mo(7)-O(4)	81.99(13)
O(25)-Mo(1)-O(7)	84.56(16)	O(34)-Mo(7)-O(4)	71.88(13)
O(22)-Mo(1)-O(7)	85.81(16)	O(11)-Mo(8)-O(31)	103.00(19)
O(10)-Mo(1)-O(1)	170.71(15)	O(11)-Mo(8)-O(29)	102.53(18)
O(13)-Mo(1)-O(1)	73.96(14)	O(31)-Mo(8)-O(29)	92.21(16)
O(25)-Mo(1)-O(1)	86.18(14)	O(11)-Mo(8)-O(9)	101.64(18)
O(22)-Mo(1)-O(1)	72.35(13)	O(31)-Mo(8)-O(9)	90.14(16)
O(7)-Mo(1)-O(1)	82.13(13)	O(29)-Mo(8)-O(9)	154.52(15)
O(23)-Mo(2)-O(40)	103.5(2)	O(11)-Mo(8)-O(20)	101.19(18)
O(23)-Mo(2)-O(9)	101.18(17)	O(31)-Mo(8)-O(20)	155.81(15)
O(40)-Mo(2)-O(9)	93.21(16)	O(29)-Mo(8)-O(20)	82.34(15)
O(23)-Mo(2)-O(25)	101.41(18)	O(9)-Mo(8)-O(20)	85.18(15)
O(40)-Mo(2)-O(25)	87.01(16)	O(11)-Mo(8)-O(2)	173.43(16)
O(9)-Mo(2)-O(25)	156.71(15)	O(31)-Mo(8)-O(2)	73.91(14)
O(23)-Mo(2)-O(32)	99.7(2)	O(29)-Mo(8)-O(2)	83.51(13)
O(40)-Mo(2)-O(32)	156.52(16)	O(9)-Mo(8)-O(2)	72.80(13)
O(9)-Mo(2)-O(32)	85.62(16)	O(20)-Mo(8)-O(2)	82.05(13)
O(25)-Mo(2)-O(32)	85.04(15)	O(21)-Mo(9)-O(20)	103.73(18)
O(23)-Mo(2)-O(2)	169.96(18)	O(21)-Mo(9)-O(5)	102.61(18)
O(40)-Mo(2)-O(2)	85.44(14)	O(20)-Mo(9)-O(5)	95.16(16)

Thisjournalis@Thertoya	loocictyoronic	11130 y2022	
O(9)-Mo(2)-O(2)	73.43(13)	O(21)-Mo(9)-O(18)	100.74(18)
O(25)-Mo(2)-O(2)	83.38(13)	O(20)-Mo(9)-O(18)	85.97(15)
O(32)-Mo(2)-O(2)	71.72(13)	O(5)-Mo(9)-O(18)	155.62(15)
O(14)-Mo(3)-O(34)	103.1(2)	O(21)-Mo(9)-O(6)	99.53(18)
O(14)-Mo(3)-O(7)	102.94(19)	O(20)-Mo(9)-O(6)	155.52(15)
O(34)-Mo(3)-O(7)	94.06(16)	O(5)-Mo(9)-O(6)	87.04(16)
O(14)-Mo(3)-O(5)	101.17(18)	O(18)-Mo(9)-O(6)	82.30(15)
O(34)-Mo(3)-O(5)	88.15(16)	O(21)-Mo(9)-O(4)	170.28(17)
O(7)-Mo(3)-O(5)	154.59(16)	O(20)-Mo(9)-O(4)	85.77(14)
O(14)-Mo(3)-O(40)	101.38(19)	O(5)-Mo(9)-O(4)	74.07(13)
O(34)-Mo(3)-O(40)	155.20(16)	O(18)-Mo(9)-O(4)	81.75(13)
O(7)-Mo(3)-O(40)	84.05(16)	O(6)-Mo(9)-O(4)	71.36(13)
O(5)-Mo(3)-O(40)	83.47(15)	O(16)-Mo(10)-O(28)	104.17(19)
O(14)-Mo(3)-O(4)	172.92(17)	O(16)-Mo(10)-O(35)	102.80(18)
O(34)-Mo(3)-O(4)	74.00(14)	O(28)-Mo(10)-O(35)	94.76(16)
O(7)-Mo(3)-O(4)	83.82(14)	O(16)-Mo(10)-O(8)	101.97(18)
O(5)-Mo(3)-O(4)	72.46(13)	O(28)-Mo(10)-O(8)	86.22(16)
O(40)-Mo(3)-O(4)	81.22(13)	O(35)-Mo(10)-O(8)	154.15(16)
O(17)-Mo(4)-O(8)	103.30(18)	O(16)-Mo(10)-O(27)	98.93(19)
O(17)-Mo(4)-O(36)	103.27(18)	O(28)-Mo(10)-O(27)	156.25(16)
O(8)-Mo(4)-O(36)	94.17(16)	O(35)-Mo(10)-O(27)	85.35(16)
O(17)-Mo(4)-O(13)	99.77(18)	O(8)-Mo(10)-O(27)	83.65(15)
O(8)-Mo(4)-O(13)	155.67(15)	O(16)-Mo(10)-O(3)	169.40(17)
O(36)-Mo(4)-O(13)	87.96(16)	O(28)-Mo(10)-O(3)	85.79(14)
O(17)-Mo(4)-O(37)	100.22(18)	O(35)-Mo(10)-O(3)	72.31(13)
O(8)-Mo(4)-O(37)	85.29(16)	O(8)-Mo(10)-O(3)	82.03(14)
O(36)-Mo(4)-O(37)	155.97(16)	O(27)-Mo(10)-O(3)	71.58(13)
O(13)-Mo(4)-O(37)	83.09(16)	O(15)-Mo(11)-O(27)	102.75(19)
O(17)-Mo(4)-O(1)	171.25(16)	O(15)-Mo(11)-O(39)	103.23(17)
O(8)-Mo(4)-O(1)	85.25(14)	O(27)-Mo(11)-O(39)	93.84(16)
O(36)-Mo(4)-O(1)	73.88(14)	O(15)-Mo(11)-O(30)	99.62(17)
O(13)-Mo(4)-O(1)	72.05(13)	O(27)-Mo(11)-O(30)	88.82(16)
O(37)-Mo(4)-O(1)	82.15(14)	O(39)-Mo(11)-O(30)	155.79(15)
O(19)-Mo(5)-O(38)	103.68(19)	O(15)-Mo(11)-O(24)	101.24(18)
O(19)-Mo(5)-O(22)	101.79(18)	O(27)-Mo(11)-O(24)	155.77(15)
O(38)-Mo(5)-O(22)	92.85(16)	O(39)-Mo(11)-O(24)	83.97(15)
O(19)-Mo(5)-O(39)	102.35(19)	O(30)-Mo(11)-O(24)	83.83(15)
O(38)-Mo(5)-O(39)	87.43(16)	O(15)-Mo(11)-O(3)	170.77(15)
O(22)-Mo(5)-O(39)	155.07(15)	O(27)-Mo(11)-O(3)	74.28(14)
O(19)-Mo(5)-O(36)	100.32(19)	O(39)-Mo(11)-O(3)	85.79(14)

	210001019010110		
O(38)-Mo(5)-O(36)	155.90(15)	O(30)-Mo(11)-O(3)	71.77(13)
O(22)-Mo(5)-O(36)	84.30(16)	O(24)-Mo(11)-O(3)	81.49(13)
O(39)-Mo(5)-O(36)	85.36(16)	O(12)-Mo(12)-O(18)	104.79(17)
O(19)-Mo(5)-O(1)	169.64(17)	O(12)-Mo(12)-O(30)	100.91(16)
O(38)-Mo(5)-O(1)	85.01(14)	O(18)-Mo(12)-O(30)	92.55(16)
O(22)-Mo(5)-O(1)	71.78(13)	O(12)-Mo(12)-O(29)	101.45(16)
O(39)-Mo(5)-O(1)	83.43(13)	O(18)-Mo(12)-O(29)	87.06(16)
O(36)-Mo(5)-O(1)	71.34(13)	O(30)-Mo(12)-O(29)	156.96(15)
O(33)-Mo(6)-O(37)	103.5(2)	O(12)-Mo(12)-O(35)	96.84(16)
O(33)-Mo(6)-O(32)	102.1(2)	O(18)-Mo(12)-O(35)	158.22(15)
O(37)-Mo(6)-O(32)	94.64(17)	O(30)-Mo(12)-O(35)	85.75(15)
O(33)-Mo(6)-O(28)	101.9(2)	O(29)-Mo(12)-O(35)	86.17(15)
O(37)-Mo(6)-O(28)	84.88(16)	O(12)-Mo(12)-O(3)	168.01(15)
O(32)-Mo(6)-O(28)	155.44(16)	O(18)-Mo(12)-O(3)	86.42(14)
O(33)-Mo(6)-O(31)	100.96(19)	O(30)-Mo(12)-O(3)	73.91(13)
O(37)-Mo(6)-O(31)	154.45(16)	O(29)-Mo(12)-O(3)	83.08(13)
O(32)-Mo(6)-O(31)	87.20(16)	O(35)-Mo(12)-O(3)	72.23(13)
	·	5	
Ag(1)-N(1)	2.130(7)	Mo(6)-O(9)	1.981(5)
Ag(1)-N(5)	2.140(7)	Mo(6)-O(22)	2.028(5)
Si(1)-O(2)	1.535(5)	Mo(6)-O(1)	2.429(5)
Si(1)-O(3)	1.548(5)	Mo(7)-O(27)	1.675(5)
Si(1)-O(4O)	1.549(5)	Mo(7)-O(29)	1.809(5)
Si(1)-O(1)	1.553(5)	Mo(7)-O(8)	1.845(5)
Mo(1)-O(5)	1.693(5)	Mo(7)-O(28)	1.979(5)
Mo(1)-O(7)	1.810(5)	Mo(7)-O(25)	2.048(5)
Mo(1)-O(9)	1.880(5)	Mo(7)-O(1)	2.445(5)
Mo(1)-O(6)	1.938(5)	Mo(8)-O(30)	1.678(5)
Mo(1)-O(8)	2.024(5)	Mo(8)-O(32)	1.832(5)
Mo(1)-O(1)	2.383(5)	Mo(8)-O(31)	1.835(5)
Mo(2)-O(10)	1.675(5)	Mo(8)-O(11)	2.011(5)
Mo(2)-O(11)	1.839(5)	Mo(8)-O(29)	2.020(5)
Mo(2)-O(6)	1.883(5)	Mo(8)-O(2)	2.446(5)
Mo(2)-O(13)	1.954(5)	Mo(9)-O(33)	1.681(5)
Mo(2)-O(12)	1.996(5)	Mo(9)-O(20)	1.799(5)
Mo(2)-O(2)	2.430(5)	Mo(9)-O(13)	1.879(5)
Mo(3)-O(14)	1.675(5)	Mo(9)-O(34)	1.975(5)
Mo(3)-O(12)	1.815(5)	Mo(9)-O(31)	2.013(5)
Mo(3)-O(16)	1.852(5)	Mo(9)-O(2)	2.417(5)
Mo(3)-O(15)	2.009(5)	Mo(10)-O(35)	1.691(5)
Mo(3)-O(7)	2.017(5)	Mo(10)-O(37)	1.836(5)

Mo(3)-O(3)	2.416(5)	Mo(10)-O(34)	1.853(5)
Mo(4)-O(17)	1.681(5)	Mo(10)-O(36)	1.981(5)
Mo(4)-O(19)	1.834(5)	Mo(10)-O(19)	1.994(5)
Mo(4)-O(18)	1.838(5)	Mo(10)-O(4O)	2.399(5)
Mo(4)-O(16)	1.988(5)	Mo(11)-O(38)	1.673(5)
Mo(4)-O(20)	2.027(5)	Mo(11)-O(23)	1.834(5)
Mo(4)-O(3)	2.428(5)	Mo(11)-O(36)	1.868(5)
Mo(5)-O(21)	1.693(5)	Mo(11)-O(26)	1.966(5)
Mo(5)-O(22)	1.810(5)	Mo(11)-O(39)	2.008(5)
Mo(5)-O(15)	1.847(5)	Mo(11)-O(4O)	2.440(5)
Mo(5)-O(23)	1.990(5)	Mo(12)-O(40)	1.672(5)
Mo(5)-O(18)	2.021(5)	Mo(12)-O(28)	1.822(5)
Mo(5)-O(3)	2.420(5)	Mo(12)-O(39)	1.848(5)
Mo(6)-O(24)	1.682(5)	Mo(12)-O(32)	1.998(5)
Mo(6)-O(25)	1.821(5)	Mo(12)-O(37)	2.013(5)
Mo(6)-O(26)	1.842(5)	Mo(12)-O(4O)	2.407(5)
N(1)-Ag(1)-N(5)	179.4(3)	O(26)-Mo(6)-O(1)	87.05(19)
O(2)-Si(1)-O(3)	110.1(3)	O(9)-Mo(6)-O(1)	71.60(18)
O(2)-Si(1)-O(4O)	109.5(3)	O(22)-Mo(6)-O(1)	81.04(19)
O(3)-Si(1)-O(4O)	109.7(3)	O(27)-Mo(7)-O(29)	104.6(2)
O(2)-Si(1)-O(1)	109.7(3)	O(27)-Mo(7)-O(8)	103.0(2)
O(3)-Si(1)-O(1)	109.0(3)	O(29)-Mo(7)-O(8)	98.1(2)
O(4O)-Si(1)-O(1)	108.7(3)	O(27)-Mo(7)-O(28)	101.2(2)
O(5)-Mo(1)-O(7)	105.4(2)	O(29)-Mo(7)-O(28)	86.8(2)
O(5)-Mo(1)-O(9)	100.9(2)	O(8)-Mo(7)-O(28)	153.2(2)
O(7)-Mo(1)-O(9)	95.4(2)	O(27)-Mo(7)-O(25)	97.5(2)
O(5)-Mo(1)-O(6)	101.0(2)	O(29)-Mo(7)-O(25)	156.4(2)
O(7)-Mo(1)-O(6)	87.4(2)	O(8)-Mo(7)-O(25)	84.6(2)
O(9)-Mo(1)-O(6)	156.4(2)	O(28)-Mo(7)-O(25)	80.9(2)
O(5)-Mo(1)-O(8)	95.4(2)	O(27)-Mo(7)-O(1)	168.3(2)
O(7)-Mo(1)-O(8)	158.6(2)	O(29)-Mo(7)-O(1)	87.0(2)
O(9)-Mo(1)-O(8)	85.3(2)	O(8)-Mo(7)-O(1)	73.18(19)
O(6)-Mo(1)-O(8)	83.8(2)	O(28)-Mo(7)-O(1)	80.87(19)
O(5)-Mo(1)-O(1)	166.6(2)	O(25)-Mo(7)-O(1)	71.25(18)
O(7)-Mo(1)-O(1)	87.7(2)	O(30)-Mo(8)-O(32)	104.0(2)
O(9)-Mo(1)-O(1)	74.26(19)	O(30)-Mo(8)-O(31)	102.7(3)
O(6)-Mo(1)-O(1)	82.43(19)	O(32)-Mo(8)-O(31)	97.0(2)
O(8)-Mo(1)-O(1)	71.87(19)	O(30)-Mo(8)-O(11)	100.1(2)
O(10)-Mo(2)-O(11)	103.0(2)	O(32)-Mo(8)-O(11)	153.6(2)
O(10)-Mo(2)-O(6)	102.8(2)	O(31)-Mo(8)-O(11)	87.7(2)
O(11)-Mo(2)-O(6)	94.5(2)	O(30)-Mo(8)-O(29)	101.6(3)

O(10)-Mo(2)-O(13)	100.8(2)	O(32)-Mo(8)-O(29)	84.4(2)
O(11)-Mo(2)-O(13)	89.9(2)	O(31)-Mo(8)-O(29)	154.5(2)
O(6)-Mo(2)-O(13)	154.3(2)	O(11)-Mo(8)-O(29)	80.5(2)
O(10)-Mo(2)-O(12)	101.3(2)	O(30)-Mo(8)-O(2)	170.5(2)
O(11)-Mo(2)-O(12)	155.6(2)	O(32)-Mo(8)-O(2)	85.1(2)
O(6)-Mo(2)-O(12)	82.8(2)	O(31)-Mo(8)-O(2)	73.2(2)
O(13)-Mo(2)-O(12)	82.9(2)	O(11)-Mo(8)-O(2)	71.47(19)
O(10)-Mo(2)-O(2)	172.7(2)	O(29)-Mo(8)-O(2)	81.60(19)
O(11)-Mo(2)-O(2)	74.52(19)	O(33)-Mo(9)-O(20)	104.7(3)
O(6)-Mo(2)-O(2)	84.3(2)	O(33)-Mo(9)-O(13)	101.8(2)
O(13)-Mo(2)-O(2)	72.45(18)	O(20)-Mo(9)-O(13)	96.2(2)
O(12)-Mo(2)-O(2)	81.04(19)	O(33)-Mo(9)-O(34)	100.7(2)
O(14)-Mo(3)-O(12)	104.6(2)	O(20)-Mo(9)-O(34)	87.0(2)
O(14)-Mo(3)-O(16)	103.0(2)	O(13)-Mo(9)-O(34)	155.6(2)
O(12)-Mo(3)-O(16)	97.4(2)	O(33)-Mo(9)-O(31)	98.5(2)
O(14)-Mo(3)-O(15)	98.4(2)	O(20)-Mo(9)-O(31)	155.9(2)
O(12)-Mo(3)-O(15)	154.8(2)	O(13)-Mo(9)-O(31)	85.5(2)
O(16)-Mo(3)-O(15)	87.5(2)	O(34)-Mo(9)-O(31)	82.1(2)
O(14)-Mo(3)-O(7)	99.9(2)	O(33)-Mo(9)-O(2)	168.9(2)
O(12)-Mo(3)-O(7)	85.5(2)	O(20)-Mo(9)-O(2)	86.1(2)
O(16)-Mo(3)-O(7)	155.4(2)	O(13)-Mo(9)-O(2)	73.94(19)
O(15)-Mo(3)-O(7)	80.2(2)	O(34)-Mo(9)-O(2)	82.23(19)
O(14)-Mo(3)-O(3)	168.8(2)	O(31)-Mo(9)-O(2)	71.16(18)
O(12)-Mo(3)-O(3)	86.59(19)	O(35)-Mo(10)-O(37)	103.8(2)
O(16)-Mo(3)-O(3)	74.70(19)	O(35)-Mo(10)-O(34)	104.0(2)
O(15)-Mo(3)-O(3)	70.78(18)	O(37)-Mo(10)-O(34)	95.6(2)
O(7)-Mo(3)-O(3)	81.12(18)	O(35)-Mo(10)-O(36)	97.2(2)
O(17)-Mo(4)-O(19)	103.4(2)	O(37)-Mo(10)-O(36)	87.9(2)
O(17)-Mo(4)-O(18)	103.4(2)	O(34)-Mo(10)-O(36)	157.0(2)
O(19)-Mo(4)-O(18)	96.9(2)	O(35)-Mo(10)-O(19)	99.1(2)
O(17)-Mo(4)-O(16)	100.0(2)	O(37)-Mo(10)-O(19)	156.2(2)
O(19)-Mo(4)-O(16)	153.9(2)	O(34)-Mo(10)-O(19)	84.8(2)
O(18)-Mo(4)-O(16)	88.7(2)	O(36)-Mo(10)-O(19)	83.0(2)
O(17)-Mo(4)-O(20)	100.7(2)	O(35)-Mo(10)-O(4O)	168.8(2)
O(19)-Mo(4)-O(20)	83.9(2)	O(37)-Mo(10)-O(4O)	74.81(19)
O(18)-Mo(4)-O(20)	154.9(2)	O(34)-Mo(10)-O(4O)	87.2(2)
O(16)-Mo(4)-O(20)	80.5(2)	O(36)-Mo(10)-O(4O)	71.69(19)
O(17)-Mo(4)-O(3)	171.9(2)	O(19)-Mo(10)-O(4O)	81.45(19)
O(19)-Mo(4)-O(3)	84.7(2)	O(38)-Mo(11)-O(23)	104.0(2)
O(18)-Mo(4)-O(3)	74.6(2)	O(38)-Mo(11)-O(36)	102.0(2)
O(16)-Mo(4)-O(3)	72.26(18)	O(23)-Mo(11)-O(36)	95.1(2)

O(20)-Mo(4)-O(3)	80.50(18)	O(38)-Mo(11)-O(26)	101.7(2)
O(21)-Mo(5)-O(22)	103.0(2)	O(23)-Mo(11)-O(26)	87.1(2)
O(21)-Mo(5)-O(15)	101.4(2)	O(36)-Mo(11)-O(26)	154.9(2)
O(22)-Mo(5)-O(15)	97.4(2)	O(38)-Mo(11)-O(39)	99.4(2)
O(21)-Mo(5)-O(23)	102.9(2)	O(23)-Mo(11)-O(39)	155.9(2)
O(22)-Mo(5)-O(23)	85.5(2)	O(36)-Mo(11)-O(39)	85.1(2)
O(15)-Mo(5)-O(23)	154.2(2)	O(26)-Mo(11)-O(39)	83.0(2)
O(21)-Mo(5)-O(18)	99.1(2)	O(38)-Mo(11)-O(4O)	169.4(2)
O(22)-Mo(5)-O(18)	156.4(2)	O(23)-Mo(11)-O(4O)	85.7(2)
O(15)-Mo(5)-O(18)	86.2(2)	O(36)-Mo(11)-O(4O)	72.43(19)
O(23)-Mo(5)-O(18)	81.5(2)	O(26)-Mo(11)-O(4O)	82.83(18)
O(21)-Mo(5)-O(3)	169.6(2)	O(39)-Mo(11)-O(4O)	71.35(18)
O(22)-Mo(5)-O(3)	86.7(2)	O(40)-Mo(12)-O(28)	103.9(2)
O(15)-Mo(5)-O(3)	73.15(19)	O(40)-Mo(12)-O(39)	103.1(2)
O(23)-Mo(5)-O(3)	81.51(19)	O(28)-Mo(12)-O(39)	96.5(2)
O(18)-Mo(5)-O(3)	71.95(19)	O(40)-Mo(12)-O(32)	99.6(2)
O(24)-Mo(6)-O(25)	103.3(2)	O(28)-Mo(12)-O(32)	85.8(2)
O(24)-Mo(6)-O(26)	103.6(2)	O(39)-Mo(12)-O(32)	155.9(2)
O(25)-Mo(6)-O(26)	97.4(2)	O(40)-Mo(12)-O(37)	98.3(2)
O(24)-Mo(6)-O(9)	97.9(2)	O(28)-Mo(12)-O(37)	155.7(2)
O(25)-Mo(6)-O(9)	88.6(2)	O(39)-Mo(12)-O(37)	87.7(2)
O(26)-Mo(6)-O(9)	155.6(2)	O(32)-Mo(12)-O(37)	81.0(2)
O(24)-Mo(6)-O(22)	99.6(2)	O(40)-Mo(12)-O(4O)	169.9(2)
O(25)-Mo(6)-O(22)	156.1(2)	O(28)-Mo(12)-O(4O)	86.2(2)
O(26)-Mo(6)-O(22)	83.7(2)	O(39)-Mo(12)-O(4O)	74.66(19)
O(9)-Mo(6)-O(22)	81.5(2)	O(32)-Mo(12)-O(4O)	81.59(18)
O(24)-Mo(6)-O(1)	169.4(2)	O(37)-Mo(12)-O(4O)	71.82(18)
O(25)-Mo(6)-O(1)	75.2(2)		

1 Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,-z+1 #2 -x+2,-y,-z+1

2 Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+2,-z #2 -x+1/2,y,-z+1/2