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The 20-o scan curves of a-AIN with different annealing conditions:

The symmetric 20-w scan curves of sputtered a-AlN/sapphire template with different
annealing conditions are shown in Figure 1. It can be concluded that there are three strong
diffraction peaks located at 25.5°, 52.6° and 59.5°, corresponding to the diffractions of (1-102)/
(2-204) r-plane sapphire substrate and nonpolar (11-20) AIN, respectively. Compared to the
reflection intensity of the sputtered layer, the intensity of the peaks corresponding to (11-20) a-
AIN layer is significantly increased (Fig. S1), indicating that the structural defects are smaller. In
addition to the diffraction XRD peaks of sapphire and AIN, the 20-w scan curve of the sample
annealed at 1750 °C shows several peaks, which corresponding to different crystal phases of

Al,O3. The results indicate that the AIN surface was oxidation and decomposition during the

annealing process.
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Figure S1. Symmetric ®-20 XRD scans of AIN layers without and with different annealing

temperatures.

The XRD ¢ scan result of (11-22) plane of a-AIN template without annealing

To obtain the XRCs of (11-22) plane of a-AIN template, the ¢ scan is the essential step.



However, there is no diffraction peak in the ¢ scan (0-360°) for the (11-22) plane a-AIN without
annealing. which is a key step before rocking curve scanning. The result indicates that the
intensity of the (11-22) plane XRC of a-AIN template is too weak to be tested, which means the

BSFD is too high and the order of the crystal lattice is severely destroyed.
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Figure S2. The XRD ¢ scan result of (11-22) plane of a-AIN template without annealing

W-H plots of a-AIN with different annealing conditions:

For non-polar nitride films, the modified Williamson-Hall model is widely used as a non-
destructive way to measure BSFD.[!l It is estimated by fitting with the FWHM of the XRC
diffraction peak of (h0-h0) (h= 1,2,3). The x-ray is incident along the c-axis during the test, which

means = 30° and ¢ = 0°. The relation used for W-H analysis can be expressed as follows:
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where A®peusure 1S the FWHM of the w-scan of a reciprocal lattice points hkl, and A is the
wavelength of X-ray source (A=0.15406 nm), 0y is the Bragg angle for the hkl reflection, A®yosaic
is tilt angles for the mosaic, L is the LCL (lateral coherence length), and the BSFD of the AIN
layer is 1/L. The LCL is extracted from the y, of the linear fits for the (10-10) and (20-20)

diffractions, as shown in Figure S3.
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Figure S3 (a)W-H plots of a-AIN films annealed at different temperature for 60 min. (b)W-H plots
of a-AlIN films annealed a 1700°C for different time.
The calculation details of the CI-NEB

In order to explain the mechanism of the decrease of BSFD during HTA process, the first-
principles calculations were performed using the projected augmented wave (PAW) plane-wave
basis,[?l with an energy cutoff of 400 eV, implemented in the Vienna ab initio simulation package
(VASP).[34 The generalized gradient approximation (GGA) exchange-correlation DFT functional
Perdew-Burke-Ernzerhof (PBE) was employed for the geometrical optimization.[’) The atomic
positions were optimized using the conjugate gradient scheme until the maximum force on each
atom is less than 0.02 eV/A. The climbing-image nudged elastic band (CI-NEB) method was
employed to locate the transition states during the movement of the stacking fault.¢]

The transition energy barriers are investigated during the elimination of the I1 stacking fault,
which has higher percentage in a-AIN."l A 225 supercell of wz-AIN is built, Figure 3
structure A), the atoms follow the stacking sequence of [...AaBbAaBb...] (Capital letters
correspond to Al, lowercase letter correspond to N) along the [0001] direction, the area along the
[0001] direction is 33.91A2 A 4 R4 R grid is used for the k-point sampling. Based on the wz-
AIN, the 11 stacking fault of AIN is built (denoted as 2-layer-11-AIN, Figure 3 structure I) with the
stacking sequence of [...AaBbCcBbCcBbAaBb...] along the [0001] direction. The minimum
energy pathway from wz-AIN to 2-layer-11-AIN is calculated by inserting 19 images between the
initial and final state, the energy barrier and atomic structures during the reaction are shown in
Figure 3.
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