## **Supporting Information**

## The pressure and temperature evolution of the Ca<sub>3</sub>V<sub>2</sub>O<sub>8</sub> crystal structure using powder X-ray diffraction

Josu Sánchez-Martín<sup>1</sup>, Daniel Errandonea<sup>1,</sup> \*, Houri Sadat Rahimi Mosafer<sup>2</sup>,

Wojciech Paszkowicz<sup>2</sup>, Roman Minikayev<sup>2</sup>, Robin Turnbull<sup>1</sup>, Marek

Berkowski<sup>2</sup>, Jordi Ibáñez-Insa<sup>3</sup>, Catalin Popescu<sup>4</sup>, Andrew Fitch<sup>5</sup>, Plácida

Rodríguez-Hernández<sup>6</sup>, Alfonso Muñoz<sup>6</sup>

<sup>1</sup> Departamento de Física Aplicada-ICMUV, Universidad de Valencia, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain

<sup>2</sup> Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, Warsaw 02-668, Poland

<sup>3</sup> Geosciences Barcelona (GEO3BCN), Spanish Council for Scientific Research (CSIC), Lluís Solé i Sabarís s/n, 08028 Barcelona, Spain

<sup>4</sup> CELLS-ALBA Synchrotron Light Facility, Cerdanyola del Vallès, 08290 Barcelona, Spain

<sup>5</sup>European Synchrotron Radiation Facility, 71 avenue des Martyrs, Grenoble 38000, France

<sup>6</sup>Departamento de Física, MALTA-Consolider Team, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, San Cristóbal de La Laguna, E-38200 Tenerife, Spain

\*E-mail: daniel.errandonea@uv.es

|                 | Space group: <i>R</i> 3 <i>c, α</i> = 10.81221(8) Å <i>, c</i> = 38.0262(3) Å and Z = 21. |               |               |             |     |  |  |  |  |
|-----------------|-------------------------------------------------------------------------------------------|---------------|---------------|-------------|-----|--|--|--|--|
|                 | $R_{wp}$ = 4.46%, $R_{exp}$ = 1.61%, and $R_p$ = 3.08%.                                   |               |               |             |     |  |  |  |  |
|                 | site                                                                                      | x             | У             | z           | SOF |  |  |  |  |
| Ca1             | 18b                                                                                       | 0.26779(30)   | 0.14629(40)   | 0.94299(12) | 1   |  |  |  |  |
| Ca <sub>2</sub> | 18b                                                                                       | 0.27257(41)   | 0.13335(40)   | 0.83668(13) | 1   |  |  |  |  |
| Ca₃             | 18b                                                                                       | 0.38697(34)   | 0.17593(40)   | 0.03377(13) | 1   |  |  |  |  |
| Ca <sub>4</sub> | 6a                                                                                        | 0             | 0             | 0.26586(20) | 1   |  |  |  |  |
| Ca₅             | 6a                                                                                        | 0             | 0             | 0.07742(84) | 0.5 |  |  |  |  |
| V <sub>1</sub>  | 18b                                                                                       | 0.30999(26)   | 0.13816(32)   | 0.13241(11) | 1   |  |  |  |  |
| V2              | 18b                                                                                       | 0.34638(35)   | 0.14844(35)   | 0.23440(11) | 1   |  |  |  |  |
| V <sub>3</sub>  | 6a                                                                                        | 0             | 0             | 0           | 1   |  |  |  |  |
| O1              | 18b                                                                                       | 0.27130(111)  | 0.06969(94)   | 0.09286(29) | 1   |  |  |  |  |
| O <sub>2</sub>  | 18b                                                                                       | 0.22900(139)  | 0.22800(131)  | 0.14420(28) | 1   |  |  |  |  |
| O <sub>3</sub>  | 18b                                                                                       | 0.27978(128)  | -0.01396(110) | 0.15577(28) | 1   |  |  |  |  |
| O <sub>4</sub>  | 18b                                                                                       | 0.47792(101)  | 0.23921(127)  | 0.14021(32) | 1   |  |  |  |  |
| O <sub>5</sub>  | 18b                                                                                       | 0.37562(89)   | 0.18501(135)  | 0.27998(27) | 1   |  |  |  |  |
| O <sub>6</sub>  | 18b                                                                                       | 0.39619(112)  | 0.03418(108)  | 0.22455(32) | 1   |  |  |  |  |
| 07              | 18b                                                                                       | 0.43262(127)  | 0.31761(134)  | 0.21488(30) | 1   |  |  |  |  |
| O <sub>8</sub>  | 18b                                                                                       | 0.17019(97)   | 0.07737(142)  | 0.22332(34) | 1   |  |  |  |  |
| O <sub>9</sub>  | 6a                                                                                        | 0             | 0             | 0.95341(48) | 1   |  |  |  |  |
| O <sub>10</sub> | 18b                                                                                       | -0.01063(121) | 0.14351(92)   | 0.01173(34) | 1   |  |  |  |  |

**Table S1**. Crystal structure information of trigonal-type  $Ca_3V_2O_8$  at ambient conditions. Fit indicators of the Rietveld refinement ( $R_p$ ,  $R_{exp}$ , and  $R_{wp}$ ) and structural occupation factors SOF are also given.

|                       |   | T = 4 K      | T = 8 K      | T = 10 K     | T = 20 K     | T = 30 K     | T = 40 K     |
|-----------------------|---|--------------|--------------|--------------|--------------|--------------|--------------|
|                       | х | 0.26997(19)  | 0.26968(19)  | 0.26988(19)  | 0.26987(19)  | 0.26989(19)  | 0.26981(20)  |
| Ca1                   | У | 0.14704(24)  | 0.14736(24)  | 0.14728(24)  | 0.14764(24)  | 0.14737(24)  | 0.14737(24)  |
|                       | Z | 0.94250(8)   | 0.94243(8)   | 0.94238(8)   | 0.94236(8)   | 0.94241(8)   | 0.94230(8)   |
|                       | х | 0.27401(22)  | 0.27398(22)  | 0.27424(22)  | 0.27416(22)  | 0.27402(22)  | 0.27423(22)  |
| Ca <sub>2</sub>       | у | 0.13657(22)  | 0.13686(23)  | 0.13696(23)  | 0.13715(23)  | 0.13716(23)  | 0.13697(23)  |
|                       | z | 0.83606(8)   | 0.83599(8)   | 0.83597(8)   | 0.83593(8)   | 0.83594(8)   | 0.83586(8)   |
|                       | х | 0.38774(21)  | 0.38788(22)  | 0.38785(22)  | 0.38771(21)  | 0.38760(22)  | 0.38792(22)  |
| Ca₃                   | у | 0.17564(24)  | 0.17637(24)  | 0.17625(24)  | 0.17653(24)  | 0.17644(25)  | 0.17648(25)  |
|                       | Z | 0.03346(8)   | 0.03334(8)   | 0.03339(8)   | 0.03336(8)   | 0.03341(8)   | 0.03330(8)   |
|                       | х | 0            | 0            | 0            | 0            | 0            | 0            |
| Ca <sub>4</sub>       | у | 0            | 0            | 0            | 0            | 0            | 0            |
|                       | z | 0.26530(12)  | 0.26526(12)  | 0.26523(12)  | 0.26520(12)  | 0.26520(12)  | 0.26506(12)  |
|                       | х | 0            | 0            | 0            | 0            | 0            | 0            |
| Ca₅                   | у | 0            | 0            | 0            | 0            | 0            | 0            |
|                       | z | 0.07568(49)  | 0.07588(50)  | 0.07591(50)  | 0.07627(52)  | 0.07656(51)  | 0.07645(51)  |
|                       | х | 0.31071(17)  | 0.31069(17)  | 0.31065(16)  | 0.31076(16)  | 0.31087(17)  | 0.31057(17)  |
| V1                    | У | 0.13603(20)  | 0.13640(20)  | 0.13639(20)  | 0.13667(20)  | 0.13646(20)  | 0.13656(20)  |
|                       | z | 0.13175(7)   | 0.13166(7)   | 0.13168(7)   | 0.13165(7)   | 0.13164(7)   | 0.13157(7)   |
|                       | х | 0.34903(19)  | 0.34925(20)  | 0.34926(19)  | 0.34934(20)  | 0.34943(20)  | 0.34947(20)  |
| V <sub>2</sub>        | У | 0.15077(20)  | 0.15049(20)  | 0.15063(20)  | 0.15065(20)  | 0.15071(20)  | 0.15069(20)  |
|                       | Z | 0.23441(7)   | 0.23431(7)   | 0.23434(7)   | 0.23429(7)   | 0.23426(7)   | 0.23419(7)   |
|                       | х | 0            | 0            | 0            | 0            | 0            | 0            |
| $V_3$                 | у | 0            | 0            | 0            | 0            | 0            | 0            |
|                       | Z | 0            | 0            | 0            | 0            | 0            | 0            |
|                       | х | 0.27919(68)  | 0.27954(69)  | 0.27923(69)  | 0.27846(69)  | 0.27754(70)  | 0.27763(71)  |
| <b>O</b> <sub>1</sub> | у | 0.08067(63)  | 0.07951(64)  | 0.07918(64)  | 0.07880(64)  | 0.07804(65)  | 0.07795(66)  |
|                       | Z | 0.09175(18)  | 0.09192(18)  | 0.09193(18)  | 0.09204(18)  | 0.09198(19)  | 0.09203(19)  |
|                       | х | 0.22579(75)  | 0.22443(75)  | 0.22482(75)  | 0.22407(76)  | 0.22419(77)  | 0.22457(78)  |
| O <sub>2</sub>        | у | 0.22039(7)   | 0.21932(74)  | 0.21985(73)  | 0.22019(74)  | 0.21967(75)  | 0.21997(76)  |
|                       | z | 0.14301(19)  | 0.14278(19)  | 0.14276(19)  | 0.14286(19)  | 0.14289(19)  | 0.14280(19)  |
|                       | х | 0.2815(76)   | 0.28214(76)  | 0.28226(76)  | 0.28181(76)  | 0.28311(77)  | 0.28220(78)  |
| <b>O</b> <sub>3</sub> | у | -0.01672(69) | -0.01567(69) | -0.01589(69) | -0.01592(69) | -0.01552(70) | -0.01513(71) |
|                       | z | 0.15276(17)  | 0.15280(17)  | 0.15260(17)  | 0.15274(17)  | 0.15274(17)  | 0.15269(17)  |
|                       | х | 0.48390(63)  | 0.48326(63)  | 0.48276(63)  | 0.48264(63)  | 0.48286(64)  | 0.48165(65)  |
| O <sub>4</sub>        | у | 0.24586(75)  | 0.24586(76)  | 0.24501(76)  | 0.24579(76)  | 0.24599(77)  | 0.24425(78)  |
|                       | Z | 0.13953(22)  | 0.13919(22)  | 0.13907(22)  | 0.13950(22)  | 0.13945(22)  | 0.13947(22)  |
|                       | х | 0.37626(65)  | 0.37856(66)  | 0.37864(66)  | 0.37900(66)  | 0.37953(67)  | 0.38022(67)  |
| <b>O</b> 5            | У | 0.18284(76)  | 0.18392(76)  | 0.18356(76)  | 0.18454(77)  | 0.18357(77)  | 0.18369(78)  |
|                       | Z | 0.27727(17)  | 0.27735(17)  | 0.27730(17)  | 0.27732(17)  | 0.27744(18)  | 0.27707(18)  |
|                       | Х | 0.40639(69)  | 0.40584(69)  | 0.40556(69)  | 0.40487(69)  | 0.40498(70)  | 0.40431(71)  |
| O <sub>6</sub>        | У | 0.04062(67)  | 0.04137(68)  | 0.04034(67)  | 0.04029(68)  | 0.04128(69)  | 0.04093(70)  |
|                       | Z | 0.22462(19)  | 0.22472(19)  | 0.22469(19)  | 0.22455(19)  | 0.22459(19)  | 0.22457(19)  |
|                       | Х | 0.42773(72)  | 0.42850(73)  | 0.42781(73)  | 0.42777(73)  | 0.42852(74)  | 0.42825(75)  |
| <b>O</b> 7            | у | 0.31481(79)  | 0.31438(80)  | 0.31465(80)  | 0.31416(80)  | 0.31541(82)  | 0.31545(83)  |
| Ι Γ                   | z | 0.21355(18)  | 0.21376(18)  | 0.21362(18)  | 0.21371(18)  | 0.21378(18)  | 0.21354(19)  |

**Table S2.** Atomic positions determined at different temperatures from refinements at 4(1) - 292(1) K.

| O <sub>8</sub>  | х | 0.17320(65)  | 0.17274(64)  | 0.17300(64)  | 0.17264(64)  | 0.17256(65)  | 0.17282(66)  |
|-----------------|---|--------------|--------------|--------------|--------------|--------------|--------------|
|                 | у | 0.07714(81)  | 0.07723(82)  | 0.07774(82)  | 0.07754(82)  | 0.07710(82)  | 0.07803(84)  |
|                 | z | 0.22357(22)  | 0.22342(23)  | 0.22355(23)  | 0.22372(23)  | 0.22363(23)  | 0.22361(23)  |
|                 | х | 0            | 0            | 0            | 0            | 0            | 0            |
| O <sub>9</sub>  | у | 0            | 0            | 0            | 0            | 0            | 0            |
|                 | Z | 0.95276(30)  | 0.95274(31)  | 0.95316(30)  | 0.95327(30)  | 0.95337(31)  | 0.95299(31)  |
|                 | х | -0.00896(80) | -0.00891(81) | -0.00896(80) | -0.00976(80) | -0.00991(81) | -0.00934(82) |
| O <sub>10</sub> | у | 0.14306(58)  | 0.14342(59)  | 0.14360(59)  | 0.14349(59)  | 0.14336(60)  | 0.14397(60)  |
|                 | Z | 0.01211(20)  | 0.01204(21)  | 0.01217(21)  | 0.01197(21)  | 0.01203(21)  | 0.01199(21)  |

## Table S2. Continuation.

|                |   | T = 50 K     | T = 111 K     | T = 155 K    | T = 206 K    | T = 255 K    | T = 292 K    |
|----------------|---|--------------|---------------|--------------|--------------|--------------|--------------|
|                | х | 0.27005(19)  | 0.26998 (19)  | 0.26999(19)  | 0.26990(19)  | 0.26996(20)  | 0.27342(23)  |
| $Ca_1$         | У | 0.14754(24)  | 0.14736 (24)  | 0.14735(24)  | 0.14722(25)  | 0.14741(25)  | 0.13640(25)  |
|                | z | 0.94228(8)   | 0.94235 (8)   | 0.94244(8)   | 0.94252(8)   | 0.94257(8)   | 0.83613(8)   |
|                | х | 0.27432(22)  | 0.27399 (22)  | 0.27385(22)  | 0.27356(23)  | 0.27334(23)  | 0.27342(23)  |
| $Ca_2$         | у | 0.13715(23)  | 0.13715 (23)  | 0.13687(23)  | 0.13679(24)  | 0.13651(24)  | 0.13640(25)  |
|                | z | 0.83587(8)   | 0.83587 (8)   | 0.83598(8)   | 0.83607(8)   | 0.83610(8)   | 0.83613(8)   |
|                | х | 0.38776(22)  | 0.38785 (22)  | 0.38762(22)  | 0.38751(22)  | 0.38711(23)  | 0.38710(23)  |
| Ca₃            | У | 0.17654(25)  | 0.17674 (25)  | 0.17641(25)  | 0.17608(26)  | 0.17596(26)  | 0.17562(27)  |
|                | z | 0.03329(8)   | 0.03330 (8)   | 0.03345(8)   | 0.03353(8)   | 0.03357(8)   | 0.03356(8)   |
|                | х | 0            | 0             | 0            | 0            | 0            | 0            |
| $Ca_4$         | У | 0            | 0             | 0            | 0            | 0            | 0            |
|                | z | 0.26508(12)  | 0.26506 (12)  | 0.26526(12)  | 0.26527(12)  | 0.26535(12)  | 0.26535(13)  |
|                | х | 0            | 0             | 0            | 0            | 0            | 0            |
| Ca₅            | У | 0            | 0             | 0            | 0            | 0            | 0            |
|                | z | 0.07620(51)  | 0.07620 (49)  | 0.07654(46)  | 0.07651(45)  | 0.07623(44)  | 0.07613(43)  |
|                | х | 0.31078(17)  | 0.31100 (17)  | 0.31078(17)  | 0.31098(17)  | 0.31080(17)  | 0.31119(17)  |
| V <sub>1</sub> | У | 0.13667(20)  | 0.13680 (20)  | 0.13639(20)  | 0.13651(20)  | 0.13644(21)  | 0.13662(21)  |
|                | z | 0.13157(7)   | 0.13163 (7)   | 0.13174(7)   | 0.13186(7)   | 0.13192(7)   | 0.13199(7)   |
| >              | х | 0.34961(20)  | 0.34954 (20)  | 0.34900(20)  | 0.34930(20)  | 0.34909(21)  | 0.34916(21)  |
| $V_2$          | У | 0.15077(20)  | 0.15057 (20)  | 0.15072(20)  | 0.15089(21)  | 0.15095(21)  | 0.15107(21)  |
|                | z | 0.23416(7)   | 0.23425 (7)   | 0.23437(7)   | 0.23448(7)   | 0.23450(7)   | 0.23453(7)   |
|                | х | 0            | 0             | 0            | 0            | 0            | 0            |
| $V_3$          | У | 0            | 0             | 0            | 0            | 0            | 0            |
|                | z | 0            | 0             | 0            | 0            | 0            | 0            |
|                | х | 0.27779(70)  | 0.27898 (69)  | 0.27715(69)  | 0.27813(70)  | 0.27645(71)  | 0.27459(71)  |
| 01             | У | 0.07874(66)  | 0.07901 (65)  | 0.07824(64)  | 0.07926(64)  | 0.07936(65)  | 0.07930(65)  |
|                | z | 0.09208(19)  | 0.09208 (18)  | 0.09204(19)  | 0.09208(19)  | 0.09218(19)  | 0.09239(19)  |
|                | х | 0.22454(78)  | 0.22404 (77)  | 0.22446(77)  | 0.22453(78)  | 0.22389(80)  | 0.22421(81)  |
| O <sub>2</sub> | У | 0.22041(76)  | 0.22028 (74)  | 0.22044(75)  | 0.21987(76)  | 0.22005(77)  | 0.22120(78)  |
|                | z | 0.14287(19)  | 0.14303 (19)  | 0.14306(19)  | 0.14342(19)  | 0.14348(19)  | 0.14362(20)  |
|                | х | 0.28229(78)  | 0.28181(77)   | 0.28227(78)  | 0.28270(78)  | 0.28223(80)  | 0.28208(81)  |
| O <sub>3</sub> | У | -0.01539(71) | -0.01569 (71) | -0.01609(71) | -0.01499(72) | -0.01540(73) | -0.01635(74) |
|                | z | 0.15251(17)  | 0.15246 (17)  | 0.15270(17)  | 0.15279(17)  | 0.15269(17)  | 0.15272(18)  |
|                | х | 0.48263(64)  | 0.48243(63)   | 0.48326(64)  | 0.48322(64)  | 0.48309(65)  | 0.48351(66)  |
| O4             | У | 0.24498(78)  | 0.24568(77)   | 0.24536(77)  | 0.24462(78)  | 0.24466(79)  | 0.24387(80)  |
|                | z | 0.13954(23)  | 0.13919(22)   | 0.13918(22)  | 0.13909(22)  | 0.13921(23)  | 0.13920(23)  |

|                 | х | 0.38018(68)  | 0.37989 (66) | 0.37764(66)  | 0.37734(66)  | 0.37659(67)  | 0.37474(68)  |
|-----------------|---|--------------|--------------|--------------|--------------|--------------|--------------|
| <b>O</b> 5      | У | 0.18397(78)  | 0.18414 (77) | 0.18277(77)  | 0.18212(78)  | 0.18093(79)  | 0.17960(79)  |
|                 | z | 0.27740(18)  | 0.27726 (17) | 0.27722(18)  | 0.27729(18)  | 0.27737(18)  | 0.27725(18)  |
|                 | х | 0.40401(71)  | 0.40403 (70) | 0.40475(70)  | 0.40356(71)  | 0.40435(73)  | 0.40416(74)  |
| O <sub>6</sub>  | У | 0.04080(70)  | 0.04022 (69) | 0.04111(69)  | 0.04066(70)  | 0.04133(71)  | 0.04117(72)  |
|                 | z | 0.22436(19)  | 0.22452 (19) | 0.22467(19)  | 0.22480(19)  | 0.22488(20)  | 0.22493(20)  |
|                 | х | 0.42850(75)  | 0.42789 (74) | 0.42825(74)  | 0.42830(75)  | 0.42807(76)  | 0.42801(77)  |
| 07              | У | 0.31574(83)  | 0.31478 (81) | 0.31500(81)  | 0.31488(83)  | 0.31501(84)  | 0.31483(85)  |
|                 | z | 0.21359(19)  | 0.21359 (18) | 0.21350(18)  | 0.21357(18)  | 0.21349(19)  | 0.21348(19)  |
|                 | х | 0.17296(66)  | 0.17280 (65) | 0.17347(65)  | 0.17368(66)  | 0.17358(67)  | 0.17393(68)  |
| O <sub>8</sub>  | у | 0.07791(84)  | 0.07783 (83) | 0.07846(83)  | 0.07900(84)  | 0.07908(86)  | 0.08020(88)  |
|                 | z | 0.22372(24)  | 0.22344 (23) | 0.22355(23)  | 0.22352(23)  | 0.22377(23)  | 0.22387(24)  |
|                 | х | 0            | 0            | 0            | 0            | 0            | 0            |
| <b>O</b> 9      | У | 0            | 0            | 0            | 0            | 0            | 0            |
|                 | z | 0.95334(31)  | 0.95313(31)  | 0.95309(31)  | 0.95332(31)  | 0.95317(31)  | 0.95327(23)  |
|                 | x | -0.01024(82) | -0.01018(81) | -0.01038(79) | -0.01102(79) | -0.01177(79) | -0.01276(79) |
| U <sub>10</sub> | у | 0.14352(60)  | 0.14269(59)  | 0.14292(59)  | 0.14198(59)  | 0.14114(60)  | 0.14029(60)  |
|                 | Z | 0.01197(21)  | 0.01196(21)  | 0.01163(20)  | 0.01161(21)  | 0.01162(21)  | 0.01137(21)  |

| Space group: <i>Cc, a</i> = 17.928(5) Å <i>, b</i> = 10.373(5) Å <i>, c</i> = 13.607(9) Å,           |      |           |           |           |     |  |  |
|------------------------------------------------------------------------------------------------------|------|-----------|-----------|-----------|-----|--|--|
| $\beta$ = 115.99(5) <sup>o</sup> and Z = 14. $R_p$ = 7.26%, $R_{exp}$ = 9.14%, and $R_{wp}$ = 11.32% |      |           |           |           |     |  |  |
| Atom                                                                                                 | Site | x         | у         | Z         | SOF |  |  |
| Ca1                                                                                                  | 4a   | 0.6919(7) | 0.2379(2) | 0.1707(2) | 1   |  |  |
| Ca <sub>2</sub>                                                                                      | 4a   | 0.4833(5) | 0.0535(1) | 0.1706(2) | 1   |  |  |
| Ca₃                                                                                                  | 4a   | 0.4954(5) | 0.4585(5) | 0.1706(2) | 1   |  |  |
| Ca4                                                                                                  | 4a   | 0.8006(8) | 0.2497(2) | 0.4905(5) | 1   |  |  |
| Ca₅                                                                                                  | 4a   | 0.5947(6) | 0.0444(1) | 0.4903(5) | 1   |  |  |
| Ca <sub>6</sub>                                                                                      | 4a   | 0.5950(6) | 0.4557(5) | 0.4903(5) | 1   |  |  |
| Ca <sub>7</sub>                                                                                      | 4a   | 0.6593(7) | 0.2660(3) | 0.8973(9) | 1   |  |  |
| Ca <sub>8</sub>                                                                                      | 4a   | 0.8770(9) | 0.4516(5) | 0.8973(9) | 1   |  |  |
| Ca <sub>9</sub>                                                                                      | 4a   | 0.8609(9) | 0.0322(1) | 0.8972(9) | 1   |  |  |
| Ca <sub>10</sub>                                                                                     | 4a   | 0.2341(2) | 0.25      | 0.2023(2) | 1   |  |  |
| Ca <sub>11</sub>                                                                                     | 4a   | 0.4206(4) | 0.25      | 0.7618(8) | 0.5 |  |  |
| V <sub>1</sub>                                                                                       | 4a   | 0.5227(5) | 0.2679(3) | 0.6022(6) | 1   |  |  |
| V <sub>2</sub>                                                                                       | 4a   | 0.2986(3) | 0.0080(1) | 0.6020(6) | 1   |  |  |
| V <sub>3</sub>                                                                                       | 4a   | 0.2807(3) | 0.4739(5) | 0.6020(6) | 1   |  |  |
| V <sub>4</sub>                                                                                       | 4a   | 0.4399(4) | 0.2741(3) | 0.2958(3) | 1   |  |  |
| V <sub>5</sub>                                                                                       | 4a   | 0.6900(7) | 0.4759(5) | 0.2958(3) | 1   |  |  |
| V <sub>6</sub>                                                                                       | 4a   | 0.1658(2) | 0.4998(5) | 0.2957(3) | 1   |  |  |
| V <sub>7</sub>                                                                                       | 4a   | 0.5       | 0.25      | 0         | 1   |  |  |
| 01                                                                                                   | 4a   | 0.5462(5) | 0.3080(3) | 0.7276(7) | 1   |  |  |
| 02                                                                                                   | 4a   | 0.3696(4) | 0.0154(1) | 0.7274(7) | 1   |  |  |
| 03                                                                                                   | 4a   | 0.3116(3) | 0.4264(4) | 0.7274(7) | 1   |  |  |
| O <sub>4</sub>                                                                                       | 4a   | 0.4685(5) | 0.1365(1) | 0.5620(6) | 1   |  |  |
| 05                                                                                                   | 4a   | 0.2399(2) | 0.1349(1) | 0.5618(6) | 1   |  |  |
| O <sub>6</sub>                                                                                       | 4a   | 0.3534(4) | 0.4784(5) | 0.5618(6) | 1   |  |  |
| 07                                                                                                   | 4a   | 0.4843(5) | 0.4008(4) | 0.5322(5) | 1   |  |  |
| O <sub>8</sub>                                                                                       | 4a   | 0.8494(8) | 0.4642(5) | 0.5323(5) | 1   |  |  |
| O <sub>9</sub>                                                                                       | 4a   | 0.1985(2) | 0.3849(4) | 0.5322(5) | 1   |  |  |
| O <sub>10</sub>                                                                                      | 4a   | 0.6042(6) | 0.2435(2) | 0.5791(6) | 1   |  |  |
| O <sub>11</sub>                                                                                      | 4a   | 0.7341(7) | 0.3864(4) | 0.5789(6) | 1   |  |  |
| O <sub>12</sub>                                                                                      | 4a   | 0.7406(7) | 0.1199(1) | 0.5789(6) | 1   |  |  |
| O <sub>13</sub>                                                                                      | 4a   | 0.4065(4) | 0.2571(3) | 0.1636(2) | 1   |  |  |
| O <sub>14</sub>                                                                                      | 4a   | 0.6320(6) | 0.4684(5) | 0.1634(2) | 1   |  |  |

**Table S3.** Crystal structure information of monoclinic-type Ca<sub>3</sub>V<sub>2</sub>O<sub>8</sub> at 9.8(1) GPa. Goodness-offit indicators of the Rietveld refinement ( $R_p$ ,  $R_{exp}$  and  $R_{wp}$ ) and SOF are also given.

| O <sub>15</sub> | 4a | 0.6249(6) | 0.0243(1) | 0.1634(2)  | 1 |
|-----------------|----|-----------|-----------|------------|---|
| O <sub>16</sub> | 4a | 0.4782(5) | 0.4187(4) | 0.3259(3)  | 1 |
| O <sub>17</sub> | 4a | 0.7581(8) | 0.3612(4) | 0.3257(3)  | 1 |
| O <sub>18</sub> | 4a | 0.0895(1) | 0.4700(5) | 0.3259(3)  | 1 |
| O <sub>19</sub> | 4a | 0.5       | 0.1524(2) | 0.3512(4)  | 1 |
| O <sub>20</sub> | 4a | 0.6269(6) | 0.4741(5) | 0.3518(4)  | 1 |
| O <sub>21</sub> | 4a | 0.7245(7) | 0.1233(1) | 0.3518(4)  | 1 |
| O <sub>22</sub> | 4a | 0.3644(4) | 0.2602(3) | 0.3307(3)  | 1 |
| O <sub>23</sub> | 4a | 0.2382(2) | 0.1136(1) | 0.3306(3)  | 1 |
| O <sub>24</sub> | 4a | 0.2280(2) | 0.3761(4) | 0.3306(3)  | 1 |
| O <sub>25</sub> | 4a | 0.5439(5) | 0.25      | 0.1317(1)  | 1 |
| O <sub>26</sub> | 4a | 0.4823(5) | 0.0998(1) | -0.0392(1) | 1 |
| O <sub>27</sub> | 4a | 0.4142(4) | 0.3319(3) | -0.0391(1) | 1 |
| O <sub>28</sub> | 4a | 0.5643(6) | 0.3181(3) | -0.0391(1) | 1 |

**Table S4.** Elastic constants obtained from DFT calculations for the trigonal structure. (including the hydrostatic pressure effect).

| Elastic constant (GPa)             | 0 GPa | 11.2 GPa |
|------------------------------------|-------|----------|
| C <sub>11</sub> , C <sub>22</sub>  | 81.2  | 133.7    |
| C <sub>12</sub>                    | 23.2  | 94.1     |
| C <sub>13</sub>                    | 32.5  | 81.3     |
| C <sub>14</sub> , -C <sub>24</sub> | -4.3  | -7.3     |
| C <sub>33</sub>                    | 118.5 | 165.8    |
| C <sub>44</sub> , C <sub>55</sub>  | 34.9  | 23.6     |
| C <sub>56</sub>                    | -4.3  | -7.3     |
| C <sub>66</sub>                    | 29.0  | 19.8     |



