Supplementary Information

Self-supporting and bifunctional Cu-based electrocatalysts with porous

structures as superior working electrode for alkaline water splitting

Xiaomei Xu^a, Kefang Yang^a, Jiazi She^a, Yanshui Zhai^a, Meihua Zhou^a, Ruihong Deng^a,

Zhimei Li^{a, *}, Hu Cai^{a, *}.

^aSchool of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.

* Corresponding author

E-mail: lizhimei@ncu.edu.cn (Zhimei Li)

E-mail: caihu@ncu.edu.cn (Hu Cai)

Materials: Sodium hydroxide, Potassium hydroxide, Anhydrous ethanol, Sodium chloride, Sodium sulfate, phenolphthalein, Methyl red were provided by Xilong Scientific Co., Ltd. Carbon disulfide were purchased by Shanghai Maclean Biochemical Technology Co., ltd.

Fig.S1. Comparison of catalytic activities with different amount of CS_{2.}

Fig. S2. (a, b) LSV of different samples.

Fig. S3. The surface morphology SEM images and elements distributions of the original CWs(a) and etched CWs (b).

Fig. S4. Morphology characterization of CW@Cu^{I/II}O/Cu (OH)₂ Nps electrode (a) and (b).

Fig. S5. TEM images of CW@Cu^{II}O/Cu^{II}S/Cu (OH)₂ Nps electrode and EDS spectra of Cu^{II}S (a) and Cu^{II}O/Cu (OH)₂ Nps (b).

Fig. S6. (a, b) The surface morphology of the working electrode after oxidation and reduction reaction at different magnification.

Fig. S7. Pore size distribution for CW@ $Cu^{I/II}O$ /Cu (OH)₂ NPs sample.

Fig. S8 (a) N_2 adsorption-desorption analysis results after oxidation and reduction experiment of the Cu^{II}O/Cu^{II}S/Cu (OH)₂ Nps; (b) Pore size distribution for samples after oxidation and reduction experiment.

Fig. S9. The result of the color-change-process around the carbon rod when methyl orange is added at +0.06 V in 1M sodium sulfate solution.

Fig. S10. The result of the color-change-process around the carbon rod when methyl orange is added at -0.06V in 1M sodium sulfate solution.

Fig. S11. Nyquist plots of samples indicated in 1M KOH.

Fig. S12. Tauc plot of $@Cu^{II}O/Cu^{II}S/Cu (OH)_2$ and $Cu^{I/II}O/Cu (OH)_2$ samples. The inset is UV-Vis diffuse reflectance spectra (DRS).

sample	CW@CuO	CW@Cu(OH) ₂	CW@CuO/CuS	CW@CuS/Cu (OH) ₂	CW@CuO/CuS/Cu (OH) ₂
Potential (V vs. RHE) for OER	2.64	2.64	1.94	1.94	1.39
η ₁₀ (mV)	410	410	610	610	160
Potential(V vs. RHE) for HER	>-0.5	-0.47	-0.46	-0.48	-0.267
η ₁₀₀ (mV)	>500	470	460	480	267

 Table S1. Electrocatalytic performance data of different samples.

Samples	S	Cu	0
CW @ Cu ^{II} O/Cu ^{II} S/Cu (OH) ₂ NPs	22.57	60.26	17.17
CW @Cu ^{I/II} O/Cu (OH) ₂ NPs	0.00	59.17	40.83

 Table S2. Element content results for samples.

Table S3. BET surface area of samples.

Samples	Specific Surface Area (m ² /g)
CW@ Cu ^{II} O/Cu ^{II} S/Cu (OH) ₂ Nps	5.56
CW @Cu ^{I/II} O/Cu (OH) ₂ Nps	27.73

Potential (V vs. RHE)	Gas	Transformation	Half Reaction (1 M KOH)		
< -0.27 V	O ₂	/	$(+) 4OH^{-} == 2H_2O + O_2\uparrow + 4e^{-}$		
<-0.27 V	H_2	/	(-) $2H_2O + 2 e^- = 2OH^- + H_2\uparrow$		
		Total reaction equation	$2H_2O = 2 H_2\uparrow + O_2\uparrow$		
		$Cu^{II}S \rightarrow Cu^{I}S$	(-) CuS + H ₂ O +2CuO+ Cu (OH) ₂		
		$Cu^{II}O/Cu(OH)_2 \rightarrow Cu^{I}O$			
$0.48~V\sim$ -	0		$+4 e^{-} = Cu_2S + Cu_2O + 4OH^{-}$		
0.27 V	O_2	/	$(+) 4OH^{-} == 2H_2O + O_2\uparrow + 4 e^{-}$		
		Total resotion equation	$CuS + 2CuO + Cu (OH)_2 = Cu_2S$		
		Total reaction equation	+Cu ₂ O+ O ₂ \uparrow +H ₂ O		
		Cu ^I S→Cu ^{II} S	$(+) Cu_2S+Cu_2O+4OH^-=$		
	Ha	$Cu^{I}O \rightarrow Cu^{II}O$	CuS+2CuO+Cu (OH) ₂ +H ₂ O +4e ⁻		
0.51 V	_	/Cu (OH) ₂			
~0.93 V		/	(-) $4H_2O + 4e^- = 4OH^- + 2H_2\uparrow$		
		Total reaction equation	$Cu_2S+Cu_2O+3H_2O=CuS+2CuO$		
		Total reaction equation	+ Cu (OH) ₂ +2H ₂ ↑		
	O ₂	/	$(+) 4OH^{-} == 2H_2O + O_2\uparrow + 4 e^{-}$		
>1.48V	H_2	/	(-) $2H_2O + 2e^- = 2OH^- + H_2\uparrow$		
		Total reaction equation	$2H_2O = 2 H_2\uparrow + O_2\uparrow$		

Table S4. Mechanism speculation.

	time	peak area	gas
1	0.71	573.3	O ₂
2	0.752	1862.2	N_2

Table S5. Gas chromatogram of air in the environment (O: N=1:3).

Table S6. Gas chromatogram of oxygen.	
--	--

	time	peak area	gas
1	0.722	3796. 9	O_2
2	0.77	86. 2	N_2

	time	peak area	gas
1	0.69	3587.5	H ₂
2	0.73	119. 1	02
3	0.78	301. 4	N ₂

 Table S7. Gas chromatogram of hydrogen.

Table	S8.	Comparison	of	HER	and	OER	activities	with	different	sulfur-coppe	r
-------	------------	------------	----	-----	-----	-----	------------	------	-----------	--------------	---

Electrocatalyst	Current Density (mA.cm ⁻²)	η for OER (mV)	Tafel slop (mV.dec ⁻ ¹)	Current Density (mA.cm ⁻²)	η for HER (mV)	Tafel slop (mV.dec ⁻¹)	Ref.
Cu ₂ S NRs @CoS	50	275	54	50	235	121	Electrochimica Acta., 2019, 296 , 1035.
CoO@Cu ₂ S	10	277	62	/	,	/	Appl. Surf. Sci., 2021, 555, 149441.
CuS/SnS ₂ /rGO Co ₃ S ₄ /CuS	100 10	264 220	47 90.78	/ 10	/ / 136	/ 136.3	Dalton Trans., 2021, 50 , 5530-5539 Mater Res Lett., 2022, 10 , 2095235.
@CoNi-LDH							
Ni-CuS	10	390	96.8				Catal. Sci. Technol., 2019, 9, 406-417.
Co ₉ S ₈ /Cu ₂ S	10	195	143.5	10	165	80.2	ACS Appl. Mater. Interfaces., 2021, 13, 9865–9874.
Co9S8/Cu2S	10	220	372	90.78	136	126.3	J. Energ. Chem., 2019, 39 , 61-67.
CoS2/CuS	10	/	/	10	85	52	ACS Sustainable Chem. Eng. 2019, 7, 14016–14022.
CuS-Ni3S2	100	377	142	/	/	/	Inorg. Chem. Front., 2019, 6, 293-302.
This work	10	160	34	100	230	119	Our work

compounds in 1M KOH