Supporting Information

A High Performance Asymmetric Supercapacitor Device Based on

CoO@CoAl-LDH Hierarchical 3D Nanobouquet Arrays

Yuan Song^{1, 2, 3}, Qiang Shen^{1, *}, Guo-Xiang Pan^{1, *}, Chao Ye², Yi-Fan Zhang¹, Lin Song ³

¹ Department of Materials Chemistry, Huzhou University, Huzhou 313000, China

² Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, China

³ School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China

*Corresponding authors: Department of Materials Chemistry, Huzhou University, Huzhou 313000, China

E-mail addresses: qiangshen@zjhu.edu.cn (Q. Shen), pgxzjut@163.com (GX. Pan)

Fig. S1 SEM image of (a)CoO@CoAl-LDH/NF, (b) pure Nickel Foam with an inset of low magnification, CoAl-LDH nanoneedles with low magnification (c) and high magnification (d).

Fig. S2 Nitrogen adsorption desorption isotherms of (a) CoO nanosheets, (b) CoAl-LDH nanoneedles, (c)CoO@ CoAl-LDH nanobouquets, pore size distribution curves of (d) CoO nanosheets, (e) CoAl-LDH nanoneedles, (f) CoO@ CoAl-LDH nanobouquets

Materials	$S_{BET}(m^2 g^{-1})$	Average Pore Size (nm)
CoO nanosheets	115.6	28.6
CoAl-LDH nanoneedles	87.3	46.2
CoO@ CoAl-LDH nanobouquets	152.8	32.4

Table. S1 Data analysis of nitrogen absorption and desorption

Fig. S3 CV curves of (a) the CoO/NF and (b) the CoAl-LDH/NF at various scan rates; GCD curves of (c) the CoO/NF and (d) the CoAl-LDH/NF at diverse current densities.

Fig. S4 Rate capability (histogram) at different scan rates of (a) CoO/NF, (b) CoAl-LDH/NF and

(c) CoO@CoAl-LDH/NF

Fig. S5 (a) The value of the slope at different peak currents after linear fitting and pseudocapacitance contribution rate (histogram) at different scan rates of (b) CoO/NF and (c) CoAl-

LDH/NF

Fig. S6 SEM images of CoO@ CoAl-LDH nanobouquets arrays after 5000 cycles

Electrode materials	Specific capacitance	Cycle stability	Ref
CoAl-LDH/rGO	1492F/g (at 1A/g)	94.3% (after 5000 cycles)	[1]
Co ₃ O ₄ @CoAl-LDH	1899.4F/g (at 1A/g)	96.8% (after 5000 cycles)	[2]
Ni ₃ S ₂ /CoAl- LDH/rGO	2457.5F/g (at 1A/g)	90.0% (after 5000 cycles)	[3]
NiCo2O4@NiCoAl- LDH	1814.2F/g (at 1A/g)	93.0% (after 2000 cycles)	[4]
O _v -NiCo-LDH	2577.8F/g (at 1A/g)	73.5% (after 5000 cycles)	[5]
CuCo ₂ O ₄ @MoO ₄	1153F/g (at 1A/g)	76.56% (after 5000 cycles)	[6]
α-phase NiCo-LDH	1120F/g (at 1A/g)	93.8% (after 1000 cycles)	[7]

Table. S2 Comparison of electrochemical properties of similar substance

MnO ₂ @NiCo-LDH	1547F/g (at 1A/g)	82.3% (after 2000 cycles)	[8]
(Ni,Co)Se ₂ /CC	2.85F/cm ² (at 2mA/cm ²)	80.8% (after 2000 cycles)	[9]
ZIF-8-C@NiAl-LDH	1370F/g (at 1A/g)	77.0% (after 1000 cycles)	[10]
CoO@CoAl-LDH	2031.2F/g (at 1A/g)	88.2% (after 5000 cycles)	This work

Fig. S7 (a) CV curves of the AC at diverse scan rates; (b) GCD curves of the AC at diverse

current densities

Fig. S8 (a) Nyquist spectra of CoO@CoAl-LDH/NF and (b) enlarged Nyquist spectra of CoO@CoAl-LDH/NF at Z' value range of 0-1.0 ohm.

Reference

- Li, J., et al., Structure-controlled Co-Al layered double hydroxides/reduced graphene oxide nanomaterials based on solid-phase exfoliation technique for supercapacitors. Journal of Colloid and Interface Science, 2019. 549: p. 236-245.
- Long, Y.-W., et al., Hierarchical Co₃O₄@CoAl hydrotalcite grown on Ni foam for high-performance asymmetric supercapacitors. Applied Clay Science, 2021.
 210.
- Xuan, H., et al., Hierarchical design of core-shell structured Ni₃S₂/CoAl-LDH composites on rGO/Ni foam with enhanced electrochemical properties for asymmetric supercapacitor. Journal of Alloys and Compounds, 2021. 873.
- He, X., et al., Hierarchical NiCo2O4@NiCoAl-layered double hydroxide core/shell nanoforest arrays as advanced electrodes for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2017. 724: p. 130-138.
- Wang, T., et al., Oxygen vacancy-rich flower-like nickel cobalt layered double hydroxides for supercapacitors with ultrahigh capacity. Ceramics International, 2022.
- Hao, C., et al., Fabrication of flower-shaped CuCo₂O₄@MgMoO₄ nanocomposite for high-performance supercapacitors. Journal of Energy Storage, 2021. 41.
- Li, J., et al., High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chemical Engineering Journal, 2017. 316: p. 277-287.
- Wang, X.H., et al., Unique MOF-derived hierarchical MnO₂ nanotubes@NiCo-LDH/CoS₂ nanocage materials as high performance supercapacitors. Journal of Materials Chemistry A, 2019. 7(19): p. 12018-12028.
- Song, W., et al., Rational construction of self-supported triangle-like MOFderived hollow (Ni,Co)Se₂ arrays for electrocatalysis and supercapacitors. Nanoscale, 2019. 11(13): p. 6401-6409.

 Han, B., et al., Three dimensional hierarchically porous ZIF-8 derived carbon/LDH core-shell composite for high performance supercapacitors. Electrochimica Acta, 2018. 263: p. 391-399.