Supporting Information

Spectroscopic characterization of two boron heterocyclic radicals in

the solid neon matrix

Jiaping Xu, Xin Xu, Danyang Li, Jiwen Jian*

Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou,

Zhejiang, 311231, China.

Table of Contents:

Calculated vibrational frequencies of Species A and B (Table S1-S2)2-3
The computed electronic transition energies of species A (Table S3)4
Calculated vibrational frequencies of Species A-isomer (Table S4)5
Calculated vibrational frequencies of Species B-isomer (Table S5-S6)6-7
Cyclopentene infrared spectra (Figure S1)8
Calculated UV-vis spectra of species A (Figure S2)9
Optimized structures of intermediates and transition states (Figure S3-S4)10-11
PES for the isomerization reactions from A to B (Figure S5)12
Optimized structures of transition states (Figure S6)
Optimized structures of species B isomers (Figure S7)14
Calculated atomic coordinates of Species A and B15

Table S1. Calculated vibrational frequencies (unscaled, cm⁻¹) and intensities (in parentheses in km/mol) of species A at the B3LYP/aug-ccpVTZ level. The experimentally observed values for ${}^{10}B(C_5H_8)$ are also listed for comparison.

¹⁰ B	¹¹ B		
C5H8	C5H8	¹⁰ B/ ¹¹ B	Exptl.
3242.1 (0)	3242.1 (0)	1.0000	
3241.0 (1)	3241.0 (1)	1.0000	
3061.0 (36)	3061.0 (36)	1.0000	
3036.3 (51)	3036.3 (51)	1.0000	
3028.6 (33)	3028.6 (33)	1.0000	
3016.8 (3)	3016.8 (3)	1.0000	
2972.7 (19)	2972.7 (19)	1.0000	
2971.1 (44)	2971.1 (44)	1.0000	
1508.6 (25)	1481.5 (7)	1.0183	1469.1
1486.3 (2)	1486.3 (2)	1.0000	
1478.9 (5)	1478.9 (5)	1.0000	
1462.4 (10)	1448.5 (27)	1.0096	1423.2
1376.5 (1)	1376.2 (1)	1.0002	
1361.4 (1)	1361.0 (1)	1.0003	
1332.8 (15)	1332.0 (14)	1.0006	1326.1
1263.9 (9)	1263.8 (8)	1.0001	1236.9
1245.7 (0)	1240.7 (0)	1.0040	
1223.2 (28)	1220.8 (27)	1.0020	1198.8
1141.4 (5)	1141.2 (5)	1.0002	
1084.7 (11)	1084.4 (12)	1.0003	1066.7
1047.0 (0)	1046.8 (0)	1.0002	
1024.6 (0)	1024.5 (0)	1.0001	
994.1 (0)	994.0 (0)	1.0001	
920.7 (18)	919.7 (20)	1.0011	868.3
887.8 (16)	882.1 (13)	1.0065	864.9
870.3 (7)	870.1 (7)	1.0002	
849.6 (2)	849.6 (2)	1.0000	
791.1 (0)	789.8 (0)	1.0017	
657.5 (12)	647.1 (14)	1.0161	637.6
566.0 (70)	561.3 (70)	1.0084	549.2 (s)
512.0 (1)	512.0 (1)	1.0000	
467.3 (5)	462.5 (5)	1.0104	
365.4 (0)	364.2 (0)	1.0033	
346.1 (8)	337.9 (7)	1.0243	
271.8 (0)			
271.0(0)	271.2 (0)	1.0022	

Table S2. Calculated vibrational frequencies (unscaled, cm⁻¹) and intensities (in parentheses in km/mol) of species **B** at the B3LYP/aug-ccpVTZ level. The experimentally observed values for ${}^{10}B(C_5H_8)$ are also listed for comparison.

$^{10}\mathrm{B}$	^{11}B		
C5H8	C5H8	$^{10}B/^{11}B$	Exptl.
3181.0 (19)	3181.0 (19)	1.0000	
3169.5 (27)	3169.5 (27)	1.0000	
3149.6 (9)	3149.6 (9)	1.0000	
3082.7 (25)	3082.7 (25)	1.0000	
3042.2 (18)	3042.2 (18)	1.0000	
3015.0 (9)	3015.0 (9)	1.0000	
2999.8 (15)	2999.8 (15)	1.0000	
2997.2 (3)	2997.2 (3)	1.0000	
1471.2 (6)	1470.4 (4)	1.0005	
1465.1 (24)	1464.5 (18)	1.0004	1431.2
1459.4 (12)	1457.9 (10)	1.0010	
1419.3 (16)	1417.7 (9)	1.0011	1408.1
1399.4 (20)	1398.5 (18)	1.0006	1367.6
1369.4 (174)	1355.9 (152)	1.0100	1342.1(s)
1319.9 (7)	1316.7 (12)	1.0024	
1257.7 (38)	1248.2 (44)	1.0076	1240.6
1165.6 (47)	1142.0 (55)	1.0207	1149.4
1128.7 (4)	1110.7 (7)	1.0162	
1110.1 (6)	1107.6 (5)	1.0023	
1098.2 (3)	1097.9 (4)	1.0003	
1061.5 (1)	1057.9 (2)	1.0034	
990.2 (1)	990.1 (1)	1.0001	
936.7 (12)	936.5 (12)	1.0002	929.0
923.4 (15)	909.5 (16)	1.0153	918.8
837.2 (0)	836.4 (0)	1.0010	
785.6 (0)	783.3 (0)	1.0029	
777.8 (6)	777.2 (6)	1.0008	
753.5 (1)	751.1 (1)	1.0032	
732.1 (17)	732.0 (17)	1.0001	719.8
635.7 (28)	634.6 (28)	1.0017	
527.4 (0)	525.5 (0)	1.0036	
461.1 (0)	458.7 (0)	1.0052	
302.9 (2)	299.4 (2)	1.0117	
272.7 (0)	271.1 (0)	1.0059	
135.3 (0)	135.1 (0)	1.0015	
29.0 (1)	29.0 (1)	1.0000	

States	Transition Energy (nm)	Oscillator strength (f)
S ₁ (2-A")	534.9	0.0000
S ₂ (2-A")	427.7	0.0679
S ₃ (1-A')	401.1	0.0024
S4 (2-A")	317.9	0.0002
S ₅ (2-A')	289.4	0.0042
S ₆ (2-A')	281.3	0.0052
S ₇ (2-A")	275.1	0.0000
S ₈ (2-A")	270.5	0.0007
S ₉ (2-A')	248.7	0.0069
S ₁₀ (2-A")	242.3	0.0134
S ₁₁ (3-A')	241.7	0.0096
S ₁₂ (2-A')	238.1	0.0001
S ₁₃ (2-A")	238.1	0.0002
S ₁₄ (2-A')	235.2	0.0090
S ₁₅ (2-A")	231.5	0.0008
S ₁₆ (3-A")	219.1	0.0000
S ₁₇ (3-A')	216.6	0.0169
S ₁₈ (2-A")	215.0	0.0606
S ₁₉ (3-A')	214.4	0.0038
S ₂₀ (2-A")	213.2	0.0143
S ₂₁ (2-A")	211.4	0.0000
S ₂₂ (3-A")	209.9	0.0043
S ₂₃ (2-A")	207.1	0.0107
S ₂₄ (2-A')	206.4	0.0072
S ₂₅ (3-A')	205.3	0.0015

Table S3. The computed electronic transition energies (ΔE), and the oscillator strengths (f) of species **A** by the B3LYP-TD/ aug-cc-pVTZ level of theory.

2,3,4-trihydroborinine	2,3,6-trihydroborinine
3145.3 (18)	3147.8 (34)
3095.0 (27)	3119.9 (13)
3052.8 (34)	3061.7 (17)
3045.7 (19)	3032.8 (31)
3036.2 (34)	3014.3 (8)
3015.8 (30)	2995.1 (35)
2974.6 (12)	2965.9 (9)
2970.4 (13)	2941.2 (6)
1578.7 (31)	1697.6 (11)
1494.7 (3)	1488.8 (3)
1466.4 (14)	1422.7 (5)
1424.4 (4)	1406.9 (17)
1411.3 (31)	1405.0 (3)
1374.7 (1)	1366.4 (16)
1361.4 (5)	1301.2 (26)
1320.5 (15)	1277.1 (3)
1256.6 (3)	1245.1 (12)
1225.6 (11)	1176.8 (27)
1166.2 (29)	1157.0 (4)
1152.3 (4)	1130.2 (5)
1134.6 (4)	1083.8 (6)
1044.3 (1)	1021.9 (4)
1025.9 (0)	1001.6 (0)
984.6 (8)	939.8 (11)
949.5 (6)	904.9 (6)
923.2 (8)	872.8 (3)
842.3 (2)	844.6 (1)
819.2 (3)	784.6 (12)
766.1 (1)	774.8 (8)
704.9 (20)	653.0 (23)
661.3 (8)	589.1 (3)
504.8 (0)	490.8 (1)
428.5 (1)	448.0 (0)
288.6 (3)	371.3 (0)
225.4 (1)	178.9 (5)
174.6 (15)	82.3 (4)

Table S4. Calculated vibrational frequencies (unscaled, cm^{-1}) and intensities (in parentheses in km/mol) of the species **A** isomers 2,3,4-trihydroborinine and 2,3,6-trihydroborinine at the B3LYP/aug-ccpVTZ level.

Table S5. Calculated vibrational frequencies (unscaled, cm^{-1}) and intensities (in parentheses in km/mol) of the species **B** isomer 1-methylene-2,3-dihydro-*1H*-borole radical at the B3LYP/aug-ccpVTZ level.

$^{10}\mathrm{B}$	¹¹ B	
C5H8	C5H8	$^{10}B/^{11}B$
3180.8 (14)	3180.8 (14)	1.0000
3160.3 (27)	3160.3 (27)	1.0000
3125.8 (24)	3125.8 (24)	1.0000
3108.0 (16)	3108.0 (16)	1.0000
3042.4 (22)	3042.4 (22)	1.0000
3018.9 (15)	3018.9 (15)	1.0000
3017.1 (6)	3017.1 (6)	1.0000
3002.4 (28)	3002.4 (28)	1.0000
1583.2 (107)	1581.8 (99)	1.0009
1476.6 (44)	1472.2 (37)	1.0030
1465.7 (13)	1465.4 (10)	1.0002
1430.4 (9)	1430.3 (10)	1.0001
1406.6 (59)	1397.6 (55)	1.0064
1323.1 (5)	1320.7 (3)	1.0018
1282.5 (32)	1259.2 (40)	1.019
1219.3 (2)	1219.2 (2)	1.0001
1197.5 (38)	1179.5 (28)	1.0153
1155.9 (7)	1138.4 (17)	1.0154
1129.4 (0)	1128.6 (1)	1.0007
1102.1 (5)	1098.3 (7)	1.0035
1024.8 (0)	1024.8 (0)	1.0000
988.4 (2)	987.9 (3)	1.0005
937.8 (25)	932.7 (23)	1.0055
902.1 (11)	902.1 (11)	1.0000
819.6 (2)	819.3 (2)	1.0004
816.6 (16)	810.9 (18)	1.0070
763.7 (1)	762.9 (1)	1.0011
750.0 (31)	749.7 (30)	1.0004
748.3 (3)	745.7 (3)	1.0035
690.2 (3)	686.8 (4)	1.0050
545.9 (1)	543.1 (1)	1.0052
437.6 (2)	432.9 (2)	1.0109
270.7 (0)	269.2 (0)	1.0056
253.2 (1)	251.2 (1)	1.0080
198.4 (0)	198.2 (0)	1.0010
99.9 (0)	99.8 (0)	1.0010

Table S6. Calculated vibrational frequencies (unscaled, cm^{-1}) and intensities (in parentheses in km/mol) of the species **B** isomer 1-methylene-2,5-dihydro-*1H*-borole radical at the B3LYP/aug-ccpVTZ level.

$^{10}\mathrm{B}$	$^{11}\mathbf{B}$	
C5H8	C5H8	$^{10}B/^{11}B$
3180.1 (12)	3180.1 (12)	1.0000
3171.3 (40)	3171.3 (40)	1.0000
3146.6 (9)	3146.6 (9)	1.0000
3107.0 (14)	3107.0 (14)	1.0000
2988.1 (0)	2988.1 (0)	1.0000
2987.4 (24)	2987.4 (24)	1.0000
2980.6 (32)	2980.6 (32)	1.0000
2976.4 (28)	2976.4 (28)	1.0000
1658.3 (2)	1658.3 (2)	1.0000
1476.9 (35)	1472.7 (26)	1.0029
1414.2 (9)	1413.7 (7)	1.0004
1408.9 (23)	1408.9 (24)	1.0000
1376.8 (1)	1375.4 (0)	1.0010
1342.9 (69)	1317.1 (66)	1.0196
1243.5 (50)	1238.7 (43)	1.0039
1181.0 (9)	1170.4 (15)	1.0091
1137.3 (16)	1128.5 (12)	1.0078
		1
1131.0 (13)	1110.7 (19)	1.0183
1131.0 (13) 1106.2 (1)	1110.7 (19) 1105.8 (0)	1.0183 1.0004
1131.0 (13) 1106.2 (1) 1105.8 (0)	1110.7 (19) 1105.8 (0) 1101.9 (2)	1.0183 1.0004 1.0035
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0)	1.0183 1.0004 1.0035 1.0000
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0) 946.3 (0)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0) 946.1 (0)	1.0183 1.0004 1.0035 1.0000 1.0002
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0) 946.3 (0) 941.1 (15)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0) 946.1 (0) 941.1 (15)	1.0183 1.0004 1.0035 1.0000 1.0002 1.0000
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0) 946.3 (0) 941.1 (15) 917.5 (2)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0) 946.1 (0) 941.1 (15) 905.7 (2)	1.0183 1.0004 1.0035 1.0000 1.0002 1.0000 1.0130
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0) 946.3 (0) 941.1 (15) 917.5 (2) 809.6 (0)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0) 946.1 (0) 941.1 (15) 905.7 (2) 809.2 (0)	1.0183 1.0004 1.0035 1.0000 1.0002 1.0000 1.0130 1.0005
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0) 946.3 (0) 941.1 (15) 917.5 (2) 809.6 (0) 773.7 (5)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0) 946.1 (0) 941.1 (15) 905.7 (2) 809.2 (0) 769.6 (6)	1.0183 1.0004 1.0035 1.0000 1.0002 1.0000 1.0130 1.0005 1.0053
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0) 946.3 (0) 941.1 (15) 917.5 (2) 809.6 (0) 773.7 (5) 760.9 (47)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0) 946.1 (0) 941.1 (15) 905.7 (2) 809.2 (0) 769.6 (6) 760.9 (47)	1.0183 1.0004 1.0035 1.0000 1.0002 1.0000 1.0130 1.0005 1.0053 1.0000
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0) 946.3 (0) 941.1 (15) 917.5 (2) 809.6 (0) 773.7 (5) 760.9 (47) 725.9 (3)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0) 946.1 (0) 941.1 (15) 905.7 (2) 809.2 (0) 769.6 (6) 760.9 (47) 725.9 (3)	1.0183 1.0004 1.0035 1.0000 1.0002 1.0000 1.0130 1.0005 1.0053 1.0000 1.0000
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0) 946.3 (0) 941.1 (15) 917.5 (2) 809.6 (0) 773.7 (5) 760.9 (47) 725.9 (3) 683.9 (26)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0) 946.1 (0) 941.1 (15) 905.7 (2) 809.2 (0) 769.6 (6) 760.9 (47) 725.9 (3) 680.9 (27)	1.0183 1.0004 1.0035 1.0000 1.0002 1.0000 1.0130 1.0005 1.0053 1.0000 1.0000 1.0000
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0) 946.3 (0) 941.1 (15) 917.5 (2) 809.6 (0) 773.7 (5) 760.9 (47) 725.9 (3) 683.9 (26) 626.8 (0)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0) 946.1 (0) 941.1 (15) 905.7 (2) 809.2 (0) 769.6 (6) 760.9 (47) 725.9 (3) 680.9 (27) 626.8 (0)	1.0183 1.0004 1.0035 1.0000 1.0002 1.0000 1.0130 1.0005 1.0053 1.0000 1.0000 1.0000 1.0000
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0) 946.3 (0) 941.1 (15) 917.5 (2) 809.6 (0) 773.7 (5) 760.9 (47) 725.9 (3) 683.9 (26) 626.8 (0) 538.1 (0)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0) 946.1 (0) 946.1 (0) 941.1 (15) 905.7 (2) 809.2 (0) 769.6 (6) 760.9 (47) 725.9 (3) 680.9 (27) 626.8 (0) 535.3 (0)	1.0183 1.0004 1.0035 1.0000 1.0002 1.0000 1.0130 1.0005 1.0053 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0052
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0) 946.3 (0) 941.1 (15) 917.5 (2) 809.6 (0) 773.7 (5) 760.9 (47) 725.9 (3) 683.9 (26) 626.8 (0) 538.1 (0) 348.6 (0)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0) 946.1 (0) 941.1 (15) 905.7 (2) 809.2 (0) 769.6 (6) 760.9 (47) 725.9 (3) 680.9 (27) 626.8 (0) 535.3 (0) 348.6 (0)	1.0183 1.0004 1.0035 1.0000 1.0002 1.0000 1.0130 1.0005 1.0053 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0052 1.0000
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0) 946.3 (0) 941.1 (15) 917.5 (2) 809.6 (0) 773.7 (5) 760.9 (47) 725.9 (3) 683.9 (26) 626.8 (0) 538.1 (0) 348.6 (0) 335.4 (4)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0) 946.1 (0) 941.1 (15) 905.7 (2) 809.2 (0) 769.6 (6) 769.6 (6) 769.6 (6) 769.6 (6) 725.9 (3) 680.9 (27) 626.8 (0) 535.3 (0) 348.6 (0) 329.4 (3)	1.0183 1.0004 1.0035 1.0000 1.0002 1.0000 1.0130 1.0053 1.0053 1.0000 1.0000 1.0000 1.0000 1.0000 1.0052 1.0000 1.0052 1.0000 1.0182
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0) 946.3 (0) 941.1 (15) 917.5 (2) 809.6 (0) 773.7 (5) 760.9 (47) 725.9 (3) 683.9 (26) 626.8 (0) 335.4 (4) 271.3 (0)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0) 946.1 (0) 941.1 (15) 905.7 (2) 809.2 (0) 769.6 (6) 760.9 (47) 725.9 (3) 680.9 (27) 626.8 (0) 535.3 (0) 348.6 (0) 329.4 (3) 269.9 (0)	1.0183 1.0004 1.0035 1.0000 1.0002 1.0000 1.0130 1.0005 1.0053 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0052 1.0000 1.0182 1.0052
1131.0 (13) 1106.2 (1) 1105.8 (0) 979.4 (0) 946.3 (0) 941.1 (15) 917.5 (2) 809.6 (0) 773.7 (5) 760.9 (47) 725.9 (3) 683.9 (26) 626.8 (0) 335.4 (4) 271.3 (0) 117.9 (0)	1110.7 (19) 1105.8 (0) 1101.9 (2) 979.4 (0) 946.1 (0) 941.1 (15) 905.7 (2) 809.2 (0) 769.6 (6) 760.9 (47) 725.9 (3) 680.9 (27) 626.8 (0) 535.3 (0) 348.6 (0) 329.4 (3) 269.9 (0) 117.7 (0)	1.0183 1.0004 1.0035 1.0000 1.0002 1.0000 1.0130 1.0005 1.0053 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0052 1.0000 1.0182 1.0017

Figure S1. Infrared spectra in the 3500-2500 and 1500-500 cm⁻¹ region from 15 minutes deposition of net 0.05 % cyclopentene in solid argon.

Figure S2. The calculated electronic absorptions spectrum of species A at the B3LYP-TD/aug-cc-pVTZ level of theory.

I1 C₁, ²A

TS1, C_1 , 2A

I2, C_s, ²A'

560 **I3**, C₁, ²A **TS4**, C_1 , 2A

I4, C₁, ²A

1.094

Figure S3. Optimized structures of the intermediates and transition states involved in the reaction pathways as shown in figure 7 at the B3LYP/aug-ccpVTZ level. Bond lengths in angstroms and bond angles in degrees.

Figure S4. Optimized structures of the intermediates and transition states involved in the reaction pathways as shown in figure 7 at the B3LYP/aug-ccpVTZ level. Bond lengths in angstroms and bond angles in degrees.

Reaction Coordinate

Figure S5. Three potential reaction pathways for the isomerization reactions from A to B were calculated at the CCSD(T)/cc-pVTZ //B3LYP/aug-cc-pVTZ level of theory. The energies are given in kJ/mol after zero-point energy corrections.

TS8, C₁, ²A

18, C_1 , 2A

TS9, C₁, ²A

TS10, C₁, ²A

.521

19, C₁, ²A

Figure S6. Optimized structures of the corresponding intermediates and transition states involved in the reaction pathways from A to B in Figure S4 at the B3LYP/aug-ccpVTZ level. (bond lengths in angstroms and bond angles in degrees).

Figure S7. Optimized structures of species **B** and two isomers (1-methylene-2,3-dihydro-*1H*-borole radical and 1-methylene-2,5-dihydro-*1H*-borole radical) at the B3LYP/aug-ccpVTZ level (bond lengths in angstrom and bond angles in degrees). The energy values shown are relative energy calculated at the CCSD(T)/cc-pVTZ //B3LYP/aug-cc-pVTZ level.

(a) A , (C _s , 2 A")			
С	-0.10756600	-0.58836500	1.31053500
С	-0.10756600	0.95014800	1.36041600
С	-0.10756600	0.95014800	-1.36041600
С	-0.10756600	-0.58836500	-1.31053500
С	0.47385300	-1.16208300	0.00000000
Н	-0.18010800	1.45114700	2.30990600
Н	1.54955100	-0.97103900	0.00000000
Н	-1.13303400	-0.95119500	1.45375700
Н	-0.18010800	1.45114700	-2.30990600
Н	0.47548800	-0.97817900	-2.14908100
Н	-1.13303400	-0.95119500	-1.45375700
Н	0.34262200	-2.24653200	0.00000000
Н	0.47548800	-0.97817900	2.14908100
В	-0.09567800	1.36102400	0.00000000

Table S7. Calculated atomic coordinates (in Angstroms) of species A and B at theB3LYP/aug-cc-pVTZ level.

(b) **B**, (C₁, 2 A)

(0) D , $(01, 11)$				
С	-0.21674200	1.24493100	-0.00012900	
С	-1.52731600	0.74301100	0.00009100	
С	-1.56603800	-0.64091000	0.00012500	
Н	-0.01729100	2.30920800	-0.00019500	
Н	-2.42132700	1.35566500	0.00022600	
Н	-2.48099100	-1.21905500	0.00030700	
В	0.75950900	0.05500300	-0.00027200	
С	2.32666900	0.05342600	0.00003900	
Н	2.77596200	1.04711600	-0.00290400	
Н	2.71313700	-0.48599100	0.87170500	
Н	2.71427000	-0.49203900	-0.86728500	
С	-0.18746500	-1.23643100	-0.00013000	
Н	-0.02782700	-1.88713900	0.86814900	
Н	-0.02812800	-1.88694200	-0.86861600	