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1 Defect formation energies.

The original intention of doping is not to change the structure of the doped matrix, 

and not to form new substances at the same time. Two problems should be paid 

attention to in real experiments: the first is that the doping concentration of dopant 

atom M should not be too large. If the doping concentration is too large, it will no 

longer be a simple phase but will form other phases; the second is to control the 

preparation conditions of materials, such as temperature, time, etc. Due to the 

different formation conditions of different substances, sometimes other substances 

may be formed even if the concentration of doping is low. These problems that should 

be paid attention to in the experiment should also be paid attention to in the 

simulation calculation.

Generally, the defect formation energy of doped M (M=Zr, Sn, Ti) in β-Fe2O3 can be 
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expressed as:

                                         (S1)
E f

MFe
= E t

MFe
- E t

β - Fe2O3
- 𝐸M + EFe

where  is the total energy of β-Fe2O3 doped with M (M=Zr, Sn, Ti), is 
E t

MFe
E t
β - Fe2O3

the total energy of pure bulk β-Fe2O3,  and  are the energy of a single atom of EM EFe

doped atoms M (M=Zr, Sn, Ti) and Fe atoms in their elementary substance, 

respectively.

In principle, formula (S1) is correct, but it does not take into account the fact that new 

substances may be formed in the experiment. So it needs to be improved, and the 

improved defect energy formula can be expressed as:

                  
E f

MFe
= E t

MFe
- E t

β - Fe2O3
- μM + μFe

(S2)

where  and  are the chemical potential of doped atoms M (M=Zr, Sn, Ti) and Fe μM μFe

atoms. How to use  and  to ensure that M only replaces the position of Fe μM μFe

without forming new substances? The following is an explanation.

First of all, under the condition of thermodynamic equilibrium, pure bulk β-Fe2O3 

crystal should meet the following condition:

                      (S3)
2μFe + 3μO = μβ - Fe2O3

where  and  are the chemical potential of Fe atoms and O atoms, is the μFe μO
μβ - Fe2O3

chemical potential of a single β-Fe2O3 unit cell. Under equilibrium conditions, 

 is equal to the total free energy  of a single β-Fe2O3 unit cell. 
μβ - Fe2O3

𝐸β - Fe2O3

 can be expressed as:
𝐸β - Fe2O3

                   (S4)
Eβ - Fe2O3

= 2EFe + 3EO + E f
β - Fe2O3
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where is the formation energy of pure bulk β-Fe2O3 crystal. So, when 
E f
β - Fe2O3

is equal to ,the relationship is as follows:
𝜇𝛽 ‒ 𝐹𝑒2𝑂3

 𝐸β - Fe2O3

                                         (S5)
2μFe + 3μO = 2EFe + 3EO + E f

β - Fe2O3

When ， ，the above formula (S5) can be transfered to：∆μO = μO - EO ∆μFe = μFe ‒ EFe

                                                (S6)
2∆μFe + 3∆μO = E f

β - Fe2O3

And under Fe-rich conditions:

                       (S7)μFe = μFe(bulk)

                   (S8)
μO = μβ - Fe2O3

‒ μFe(bulk)

Under O-rich conditions:

                         (S9)
μO = μO(O2) 

                     (S10)
μO = μβ - Fe2O3

- μFe(bulk)

The result of defect formation energies is shown in Figure S1. It shows that it is 

favorable to dope Zr, Sn, Ti into substitutional site under O-rich conditions. In the 

case of Ti-doped, the defect formation energy is the minimum, while that of Sn-doped 

is the maximum. Based on the results of defect formation energies, the equilibrium 

impurity concentrations (or the solubility in host) of Ti will be relatively higher than 

that of other impurities.
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Figure S1. Defect formation energies of Zr, Sn, Ti doping into β-Fe2O3.

2 The bond length of FeO6 distorted octahedron structure.

Figure S2. The model of FeO6 distorted octahedron structure.

Table S1. The bond length ∆d(Fe-O)/ Å of FeO6 distorted octahedron structure.

∆d(Fe-O1) ∆d(Fe-O2) ∆d(Fe-O3) ∆d(Fe-O4) ∆d(Fe-O5) ∆d(Fe-O6)

 pure 2.00311 2.07985 2.00311 2.07985 2.06725 2.06725

Zr-doped 1.98469 2.08807 1.99574 2.06697 2.12918 2.06832

Sn-doped 1.97713 2.13821 2.00051 2.05615 2.10616 2.06425

Ti-doped 1.99446 2.08361 1.99098 2.06346 2.11208 2.06234
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3 The k-point path.

Details for the k-point path of β-Fe2O3 are shown below.

Figure S3. The k-point path of β-Fe2O3.

Table S2. Symmetry k-points of β-Fe2O3.

×b1 ×b2 ×b3

Γ 0 0 0

H 0.5 -0.5 0.5

N 0 0 0.5

P 0.25 0.25 0.25

4 Effective mass.

By fitting the top of the valence band and the bottom of the conduction band, the 

degree of curvature of the bands edge can be obtained. The degree of curvature 

characterizes the dynamic response characteristics of the carriers in β-Fe2O3 to the 

external field, and is usually expressed by effective mass. The effective mass obtained 

by fitting the top of the valence band characterizes the dynamic response 

characteristics of material holes, and the bottom of the conduction band characterizes 

the dynamic response characteristics of electrons. Considering that effective mass 
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varies in different directions of the Brillouin zone, effective masses of electron and 

hole of β-Fe2O3 are calculated along some possible directions. As shown in Figure 2, 

β-Fe2O3 is a direct band gap semiconductor. The valence band maximum (VBM) and 

the conduction band minimum (CBM) for β-Fe2O3 crystal are located at the center of 

the reduced Brillouin zone Γ point. Due to the symmetry of the Brillouin zone of β-

Fe2O3, it is only necessary to consider directions connecting with some high-

symmetry points. Effective masses of the electron and hole along three directions, Γ(0 

0 0) →H(0.5 -0.5 0.5), Γ(0 0 0) →N(0 0 0.5), and Γ(0 0 0) →P(0.25 0.25 0.25) are 

calculated. The effective mass of carrier (referenced to the electron rest mass m0) can 

be calculated from the relation:

                              (S11)
m =

ℏ2

2|a|

where  is the reduced Planck’s constant, a is the second derivative of the curve in ℏ

valence band (for holes) and conduction band (for electrons).


