## **Supporting Information**

## **Diffusion measurements of hydrocarbons in H-MCM-41**

## extrudates with pulsed-field gradient nuclear magnetic resonance

## spectroscopy

Vladimir V. Zhivonitko<sup>a</sup>, Zuzana Vajglová<sup>b</sup>, Päivi Mäki-Arvela<sup>b</sup>, Narendra Kumar<sup>b</sup>,

Markus Peurla<sup>c</sup>, Ville-Veikko Telkki<sup>1</sup> and Dmitry Yu. Murzin<sup>b\*</sup>

<sup>a</sup> NMR Research Unit, University of Oulu, Oulu, Finland

<sup>b</sup>Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Henriksgatan 2, Turku/Åbo, Finland, 20500 <sup>c</sup> Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Turku, Finland, 20520

\*<u>dmurzin@abo.fi</u>, corresponding author







**Fig. S1** Particle size distribution determined from SEM: a) Bindzil (**B100-P**), b) H-MCM-41 (**M100-P**), c) H-MCM-41 with 10% Bindzil (**B10M90-P**), d) H-MCM-41 with 25% Bindzil (**B25M75-P**), e) H-MCM-41 with 30% Bindzil (**B30M70-P**), f) H-MCM-41 with 50% Bindzil (**B50M50-P**), g) H-MCM-41 (**M100-E**), h) H-MCM-41 with 10% Bindzil (**B10M90-E**), i) H-MCM-41 with 25% Bindzil (**B25M75-E**), j) H-MCM-41 with 30% Bindzil (**B30M70-P**), k) H-MCM-41 with 50% Bindzil (**B50M50-P**).







**Fig. S2** Particle size distribution determined from TEM: a) Bindzil (**B100-P**), b) H-MCM-41 (**M100-P**), c) H-MCM-41 with 10% Bindzil (**B10M90-P**), d) H-MCM-41 with 25% Bindzil (**B25M75-P**), e) H-MCM-41 with 30% Bindzil (**B30M70-P**), f) H-MCM-41 with 50% Bindzil (**B50M50-P**), g) H-MCM-41 (**M100-E**), h) H-MCM-41 with 10% Bindzil (**B10M90-E**), i) H-MCM-41 with 25% Bindzil (**B25M75-E**), j) H-MCM-41 with 30% Bindzil (**B30M70-E**), k) H-MCM-41 with 50% Bindzil (**B50M50-E**).



Fig. S3 (a) <sup>1</sup>H PFG NMR spectra as a function of the gradient strength measured for n-hexadecane in H-MCM-41 (M100-E) at diffusion time  $\Delta = 240$  ms. (b) Estimation of S/V ratio from the initial slope of D( $\Delta$ ) values and the corresponding grain size d<sub>gr</sub>.



**Fig. S4** (a) Spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) obtained for n-hexadecane in H-MCM-41 (**M100-P**). The straight lines show the initial slope of the curves. (b) Apparent diffusion coefficient values extracted from the initial slope data. (c) Results of the 2-component fit (red curve) of the spin-echo attenuation curves for  $\Delta = 240$  ms of the same catalyst. (d) Residuals resulting after the fitting procedure.



**Fig. S5** (a) Spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) obtained for n-hexadecane in H-MCM-41 with 10% of Bindzil (**B10M90-E**). The straight lines show the initial slope of the curves. (b) Apparent diffusion coefficient values extracted from the initial slope data. (c) Results of the 2-component fit (red curve) of the spin-echo attenuation curves for  $\Delta = 240$  ms of the same catalyst. (d) Residuals resulting after the fitting procedure.



Fig S6 (a) Spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) obtained for n-hexadecane in H-MCM-41 with 10% of Bindzil (B10M90-P). The straight lines show the initial slope of the curves. (b) Apparent diffusion coefficient values extracted from the initial slope data. (c) Results of the 2-component fit (red curve) of the spin-echo attenuation curves for  $\Delta = 240$  ms of the same catalyst. (d) Residuals resulting after the fitting procedure.



**Fig. S7** (a) Spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) obtained for n-hexadecane in H-MCM-41 with 25% of Bindzil (**B25M75-E**). The straight lines show the initial slope of the curves. (b) Apparent diffusion coefficient values extracted from the initial slope data. (c) Results of the 2-component fit (red curve) of the spin-echo attenuation curves for  $\Delta = 240$  ms of the same catalyst. (d) Residuals resulting after the fitting procedure.



**Fig. S8** (a) Spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) obtained for n-hexadecane in H-MCM-41 with 25% of Bindzil (**B25M75-P**). The straight lines show the initial slope of the curves. (b) Apparent diffusion coefficient values extracted from the initial slope data. (c) Results of the 2-component fit (red curve) of the spin-echo attenuation curves for  $\Delta = 240$  ms of the same catalyst. (d) Residuals resulting after the fitting procedure.



**Fig. S9** (a) Spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) obtained for n-hexadecane in H-MCM-41 with 30% of Bindzil (**B30M70-E**). The straight lines show the initial slope of the curves. (b) Apparent diffusion coefficient values extracted from the initial slope data. (c) Results of the 2-component fit (red curve) of the spin-echo attenuation curves for  $\Delta = 240$  ms of the same catalyst. (d) Residuals resulting after the fitting procedure.



**Fig. S10** (a) Spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) obtained for n-hexadecane in H-MCM-41 with 30% of Bindzil (**B30M70-P**). The straight lines show the initial slope of the curves. (b) Apparent diffusion coefficient values extracted from the initial slope data. (c) Results of the 2-component fit (red curve) of the spin-echo attenuation curves for  $\Delta = 240$  ms of the same catalyst. (d) Residuals resulting after the fitting procedure.



**Fig. S11** (a) Spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) obtained for n-hexadecane in H-MCM-41 with 50% of Bindzil (**B50M50-E**). The straight lines show the initial slope of the curves. (b) Apparent diffusion coefficient values extracted from the initial slope data. (c) Results of the 2-component fit (red curve) of the spin-echo attenuation curves for  $\Delta = 240$  ms of the same catalyst. (d) Residuals resulting after the fitting procedure.



**Fig. S12** (a) Spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) obtained for n-hexadecane in H-MCM-41 with 50% of Bindzil (**B50M50-P**). The straight lines show the initial slope of the curves. (b) Apparent diffusion coefficient values extracted from the initial slope data. (c) Results of the 2-component fit (red curve) of the spin-echo attenuation curves for  $\Delta = 240$  ms of the same catalyst. (d) Residuals resulting after the fitting procedure.



Fig. S13 Spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) obtained for n-hexadecane in Bindzil (B100-P). The straight lines show the initial slope of the curved. (b) Apparent diffusion coefficient values extracted from the initial slope data.



**Fig. S14** Diffusion coefficient distributions obtained in Laplace inversion of PFG NMR spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) for (a) H-MCM-41 with 10% of Bindzil (**B10M90-P**) and (b) H-MCM-41 with 10% of Bindzil (**B10M90-E**) catalysts.



**Fig. S15** Diffusion coefficient distributions obtained in Laplace inversion of PFG NMR spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) for (a) H-MCM-41 with 25% of Bindzil (**B25M75-P**) and (b) H-MCM-41 with 25% of Bindzil (**B25M75-E**) catalysts.



**Fig. S16** Diffusion coefficient distributions obtained in Laplace inversion of PFG NMR spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) for (a) H-MCM-41 with 30% of Bindzil (**B30M70-P**) and (b) H-MCM-41 with 30% of Bindzil (**B30M70-E**) catalysts.



**Fig. S17** Diffusion coefficient distributions obtained in Laplace inversion of PFG NMR spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) for (a) H-MCM-41 with 50% of Bindzil (**B50M50-P**) and (b) H-MCM-41 with 50% of Bindzil (**B50M50-E**) catalysts.



**Fig. S18** Diffusion coefficient distributions obtained in Laplace inversion of PFG NMR spin-echo attenuation curves at different diffusion times  $\Delta$  (see legend) for Bindzil (**B100-P**).