Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supporting Information

Probing the Electronic Structure and Spectroscopy of the Pyrrolyl and Imidazolyl Radicals using High-Resolution Photoelectron Imaging of Cryogenically-Cooled Anions

Yue-Rou Zhang‡, Dao-Fu Yuan‡, and Lai-Sheng Wang

Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA. E-mail: Lai-Sheng_Wang@brown.edu

‡ Equal contribution.

Table of Contents

1. Experimental Procedures	2
2. Supplementary Figures	3
3. Supplementary Tables	7

1 Experimental Procedures

1.1 Experimental methods

The experiment was carried out using our third-generation ESI-PES apparatus.¹ The pyrrole and imidazole samples were purchased from Sigma-Aldrich with a specified purity (98% for pyrrole and 99% for imidazole) and used without further purification. The pyrrolide or imidazolide anions were produced by electrospray of a 1 mM solution of pyrrole or imidazole in a mixed solvent of CH_3OH/H_2O (9:1 volume ratio) at pH~10. Anions generated in the ESI source ² were guided by a set of quadrupole and octupole ion guides into a cryogenically-cooled 3D Paul trap operated at 4.6 K.³ After being accumulated for about 0.1 s and thermally cooled via collisions with 1 mTorr He/H₂ (4/1 volume) background gas, the anions were pulsed out of the trap at a repetition rate of 10 Hz, and entered the extraction zone of a time-of-flight mass spectrometer. The pyrrolide and imidazolide anions were selected by a mass gate and then photodetached in the interaction zone of a velocity-map imaging lens⁴ by a Nd:YAG laser or a tunable dye laser. The propagation and polarization directions of the detachment laser were parallel to the imaging plane. Photoelectrons were projected onto a pair of 75-mm diameter micro-channel plates coupled to a phosphor screen and captured by a charge-coupled-device camera. The PE images were inverted using pBASEX⁵ and BASEX.⁶ The PE spectra were calibrated with the known spectra of Au⁻ at different photon energies. The kinetic energy (KE) resolution was 3.8 cm⁻¹ for electrons with 55 cm⁻¹ KE and 1.5% (Δ KE/KE) for KE above 1 eV in the current experiment.

1.2 Calculation methods

Geometry optimization and ground-state electronic structure calculations were performed using density functional theory (DFT) at the B3LYP/6-311++(d,p) level of theory. The electronic structure calculations were followed by vibrational analyses. All electronic structure calculations were preformed using Gaussian 09.⁷ Franck-Condon factor calculations were carried out using the FC-Lab2 program.⁸

2 Supplementary Figures

Fig. S1 Photoelectron image and spectrum of the pyrrolide anion at 401.25 nm (3.0900 eV). The weak feature around 1.75 eV is due to the presence of a small amount of the 2-pyrrolide isomer. The double arrow indicates the polarization direction of the detachment laser.

Fig. S2 Photoelectron images and spectra of the imidazolide anion at (a) 302.375 nm (4.1003 eV) and (b) 285.375 nm (4.3446 eV). The double arrow indicates the polarization direction of the detachment laser.

Fig. S3 Photoelectron images and spectra of the pyrrolide anion at (a) 535.75 nm (2.3142 eV), (b) 531.15 nm (2.3343 eV), (c) 515.75 nm (2.4040 eV), (d) 510.75 nm (2.4275 eV) and (e) 503.75 nm (2.4612 eV). The double arrows indicate the polarization direction of the detachment laser.

Fig. S4 Photoelectron images and spectra of the imidazolide anion at (a) 451.95 nm (2.7433 eV), (b) 450.75 nm (2.7506 eV), (c) 439.75 nm (2.8194 eV), (d) 437.95 nm (2.8310 eV) and (e) 427.75 nm (2.8985 eV). The double arrows indicate the polarization direction of the detachment laser.

 $HOMO (a_2) \qquad HOMO-1 (b_1)$ Fig. S5 The valence molecular orbitals of the pyrrolide anion (isovalue = 0.02).

Fig. S6 The valence molecular orbitals of the imidazolide anion (isovalue = 0.02).

Fig. S7 The atomic displacement vectors of the vibrational modes for pyrrolyl. The frequencies are shown below for each mode.

Fig. S8 The atomic displacement vectors of the vibrational modes for imidazolyl. The frequencies are shown below for each mode.

Fig. S9 The atomic displacement vectors of the vibrational modes for 2-pyrrolyl. The frequencies are shown below for each mode.

3 Supplementary Tables

Observed peak	BE (eV) ^a	BE (cm⁻¹) ^a	Shift (cm ⁻¹)	β	Assignment	ω (cm ⁻¹) ^b	ω (cm ⁻¹) ^c
×00 ⁰ ′	1.6990(30)	13703(24)	0	-0.2	0-0 of ground state		
^00 ^{0'}	1.7170(53)	13849(43)	146	0.1	0-0 of first excited state		
×1′	1.7321(44)	13970(35)	267	-0.4	211	292	325.8
×2′	1.7542(53)	14149(43)	446	-0.5	20 ¹	455	499.3
×3'	1.7656(60)	14241(48)	538		21 ²	584	651.6
×4′	1.7824(33)	14376(27)	673	-0.5	18 ¹	683	695.7
×5′	1.8034(54)	14545(44)	842	-0.4	15 ¹ /16 ¹	855/856	846.0/842.0
^x 6′	1.8319(36)	14775(29)	1072	-0.4	12 ¹	1057	1060.2

Table S1. The observed features for the 2-pyrrolide anion, with their binding energies (BEs), shifts relative to the 0–0 transition, asymmetry parameters (β), and assignments, compared with theoretical frequencies (ω).

^oThe numbers in the parentheses indicate the experimental uncertainties in the last digit.

^bThe frequencies are calculated at the B3LYP/6-311++G** level of theory (see Figure S9 and Table S6).

^cFrom reference 9, calculated at the fc-CCSD(T)/ANO level of theory.

Table S2.	The observed	vibrational	modes an	d their	frequencies	for	pyrrolyl	from	the current	work, ir	n comparison	with the
calculated	values.											

vibrational mode	symmetry	ω (exp) (cm ⁻¹) ^a	ω (theo) (cm ^{-1)b}	ω (theo) (cm ⁻¹) ^c
V ₂₁	b ₂	656 (7)	664	668.3
V ₁₃	b ₁	688 (7)	710	700.9
v_{10}	a ₂	808 (12)	817	815.0
ν9	a ₂	890 (8)	904	885.3
ν_8	a ₁	844 (8)	882	869.5
ν_7	a1	1018 (11)	1043	1039.1
ν ₅	a ₁	1224 (12)	1202	1188.6
V_4	a1	1446 (10)	1433	1447.3

^{*a*}The numbers in the parentheses indicate the experimental uncertainties in the last digit.

^bThe theoretical frequencies are calculated at the B3LYP/6-311++G** level of theory. See Table S4.

^cFrom ref. 9, calculated at the fc-CCSD(T)/ANO level of theory.

vibrational mode	symmetry	ω (exp) (cm ⁻¹) ^a	ω (theo) (cm ⁻¹) ^b
v_{18}	b ₂	786(5)	780
V ₁₂	b ₁	512(6)	511
v_{11}	b1	740(6)	756
ν9	a ₂	545(6)	560
ν_8	a ₂	852(6)	874
ν_7	a1	898(6)	919
ν_6	a1	969(6)	982
ν ₅	a1	1139(6)	1166
ν_4	a ₁	1284(6)	1313
ν_3	a1	1378(6)	1436

Table S3. The observed vibrational modes and their frequencies for imidazolyl from the current work, in comparison with the calculated values.

^{*a*}The numbers in the parentheses indicate the experimental uncertainties in the last digit.

^bThe theoretical frequencies are calculated at the B3LYP/6-311++G** level of theory (see Table S7). These data are the same as those reported in ref. 10 computed at the same level of theory.

Symmetry	Mode	ω (cm ⁻¹) ^a	ω (cm ⁻¹) ^b
	v1	3246	3275.1
	v ₂	3201	3230.7
	V3	1556	1549.1
21	ν_4	1433	1447.3
aī	V5	1202	1188.6
	ν_6	1090	1084.2
	ν ₇	1043	1039.1
	ν_8	882	869.5
a2	v 9	904	885.3
	V10	817	815.0
	v ₁₁	488	488.7
	v ₁₂	835	815.6
b1	V13	710	700.9
	V14	540	541.0
	v ₁₅	3227	3254.2
	v_{16}	3197	3226.2
	v ₁₇	1355	1349.0
b2	v ₁₈	1293	1284.3
	V ₁₉	1079	1069.4
	V20	935	924.6
	V21	664	668.3

 Table S4. The theoretical frequencies of pyrrolyl.

 o The theoretical frequencies are calculated at the B3LYP/6-311++G** level of theory.

^bThe harmonic frequencies are from reference 9, calculated at the fc-CCSD(T)/ANO level of theory.

Table S5. The theoretical frequencies of imidazolyl.

Symmetry	Mode	ω (cm ⁻¹) ^a
· ·	v ₁	3231
	v ₂	3218
	V ₃	1436
al	ν4	1313
	V5	1166
	v ₆	982
	v ₇	919
22	v ₈	874
äz	V 9	560
	v ₁₀	867
b1	v ₁₁	756
	V ₁₂	511
	v ₁₃	3205
	v ₁₄	1523
h2	V15	1289
DZ	V16	1188
	v ₁₇	1016
	v ₁₈	780

^oThe theoretical frequencies are calculated at the B3LYP/6-311++G** level of theory. These data are the same as those reported in ref. 10 computed at the same level of theory.

Symmetry	Mode	ω (cm⁻¹) ^a	ω (cm ⁻¹) ^b
	ν_1	3675	3695.4
	V2	3263	3295.3
	V3	3258	3286.9
	ν_4	3228	3259.1
	V5	1549	1562.9
	v ₆	1453	1460.8
	v_7	1403	1412.6
a'	ν_8	1359	1373.8
	V 9	1252	1245.7
	V10	1170	1166.8
	v ₁₁	1103	1103.8
	v_{12}	1057	1060.2
	v ₁₃	1022	1020.7
	v_{14}	888	878.9
	V15	855	846.0
	V16	856	842.0
	v ₁₇	753	750.0
2"	v ₁₈	683	695.7
d	V19	616	610.6
	V ₂₀	455	499.3
	v ₂₁	292	325.8

Table S6. The theoretical frequencies of 2-pyrrolyl.

^{*a*}The theoretical frequencies are calculated at the B3LYP/6-311++G** level of theory.

^bThe harmonic frequencies are from reference 9, calculated at the fc-CCSD(T)/ANO level of theory.

References

- 1 L. S. Wang, J. Chem. Phys., 2015, 143, 040901.
- 2 L. S. Wang, C. F. Ding, X. B. Wang and S. E. Barlow, *Rev. Sci. Instrum.*, 1999, **70**, 1957–1966.
- 3 X. B. Wang and L. S. Wang, *Rev. Sci. Instrum.*, 2008, **79**, 073108.
- 4 I. León, Z. Yang, H. T. Liu and L. S. Wang, *Rev. Sci. Instrum.*, 2014, **85**, 083106.
- 5 G. A. Garcia, L. Nahon and I. Powis, *Rev. Sci. Instrum.*, 2004, **75**, 4989–4996.
- 6 V. Dribinski, A. Ossadtchi, V. A. Mandelshtam and H. Reisler, *Rev. Sci. Instrum.*, 2002, **73**, 2634–2642.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2016.
- 8 I. Pugliesi and K. Müller-Dethlefs, J. Phys. Chem. A, 2006, **110**, 4657–4667.
- 9 S. L. Johansen, Z. Xu, J. H. Westerfield, A. C. Wannenmacher and K. N. Crabtree, J. Phys. Chem. A, 2021, 125, 1257–1268.
- 10 A. J. Gianola, T. Ichino, R. L. Hoenigman, S. Kato, V. M. Bierbaum and W. C. Lineberger, J. Phys. Chem. A, 2005, **109**, 11504– 11514.