Supporting Information

Absolute determination of the chemical kinetic rate constant by optical tracking the reaction on the second timescale using cavity-enhanced absorption spectroscopy

Hongming Yi^{1*}, Lingshuo Meng^{1,2}, Tao Wu^{3#}, Amélie Lauraguais¹, Cecile Coeur¹, Alexandre Tomas², Hongbo Fu⁴, Xiaoming Gao⁵, Weidong Chen^{1#}

¹ Laboratoire de Physicochimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France

² IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Center for Energy and Environment, 59000 Lille, France

³ Key Laboratory of Nondestructive Test, Nanchang Hangkong University, Nanchang 330063, China

⁴ Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Institute of Atmospheric Sciences,

Fudan University, Shanghai, 200433, China

⁵ Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China

* now with Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA

[#]Corresponding Authors: Weidong Chen (chen@univ-littoral.fr); Tao Wu (wutccnu@nchu.edu.cn)

Contents:

Optical instrument description: Performance characterization of the developed optical instruments------S2

List of Figures:

Figure S1. Picture of the LED-IBBCEAS and EC-QCL MPC setups installed in the atmospheric simulation chamber for simultaneous measurements of NO₃, NO₂ and N₂O₅ concentrations-----S3

Figure S2. NO₂ and NO₃ absorption cross sections, mirror reflectivity and LED emission spectrum in the wavelength range 610 - 690 nm------S4

Figure S3. Comparison between the NO_2 concentrations measured by LED-IBBCEAS and chemiluminescence NO_x analyzer without interferences (i.e., before ozone introduction; 0-1200 s in Figure 4(a))-----S4

Figure S4. Broadband absorption spectra of 257 ppbv NO₂ and 1.683 ppbv NO₃ in association with the corresponding fit spectra-----S5

Figure S5. Measured (in 25 s) and fitted EC-QCL MPC direct absorption spectra of 30 ppbv N_2O_5 from 1223 to 1263 cm⁻¹ associated with residual for detection limit evaluation------S6

Figure S6. Allan deviation for evaluation of the performances of the developed (a) LED-IBBCEAS and (b) EC-QCL MPC apparatus-----S7

Figure S7. Frequency distribution of zero-NO₃, zero-NO₂, zero-N₂O₅ and zero-O₃ mixing ratios measured by IBBCEAS, EC-QCL MPC and photometric analyzer with integration time of 25 s, respectively-------S8

List of Tables:

Tables S1-S3. Summarized rate constants between NO3 and VOCs (propanal, isoprene,formaldehyde)measuredbydifferenttechniquesfromtheliteraturevalues------S9

References------S10

Performance characterization of the developed optical instruments

The developed LED-IBBCEAS and EC-QCL MPC setups (as shown in Figure S1) were evaluated by simultaneous optical tracing of NO₃, NO₂ and N₂O₅ concentrations. First, NO₂ with concentrations varying from 100 ppbv (part per billion by volume) to 2 ppmv (part per million by volume) was injected into the simulation chamber. The corresponding NO₂ concentrations measured by a Thermo 42i NOx analyzer were used to determine the cavity mirror reflectivity $R(\lambda)$ (Figure S2), as described in [1]. The reference absorption cross-sections (in [cm².molecule⁻¹]) of NO₂ [2] and NO₃ [3] (Figure S2) used for concentration retrievals, associated with the LED emission spectrum, are also given in Figure S2. Approximately 1.1 ppmv of O₃ generated from a corona discharge ozone generator (C-L010-DTI, C-Lasky) was introduced into the chamber after a prior injection of 2 ppm NO₂ to produce NO₃. In the presence of an excess of NO₂, the NO₃ reaction with NO₂ to produce N₂O₅ also occurs once NO₃ is formed. Time-series measurements of NO₂, NO₃ and N₂O₅ concentrations were simultaneously performed using the LED-IBBCEAS and EC-QCL MPC instruments. Typical broadband absorption spectra of NO₃, NO₂, N₂O₅ and the corresponding fits for their concentration retrievals are given in Figures S3 and S4. Figure S3(a) shows LED-IBBCEAS-based simultaneous measurement of broadband absorption spectra of ~ 1.7 ppbv NO₃ and ~260 ppbv NO₂. Figure S3(b) presents the decomposed fitted absorption spectrum of each species. 1- σ detection limits (DL) of 2.2 (1.0) pptv for NO₃ and 1.6 (0.8) ppbv for NO₂ in 25 s (120 s) integration time were deduced based on the fit residual shown in Figure S3(c). EC-QCL MPC measurement of ~30 ppbv N₂O₅ absorption and the corresponding fit residual are given in Figures S4(a) and S4(b), respectively. The corresponding DL for N₂O₅ was ~ 12 (2.6) ppbv in a 25 (600) s integration time. Using the estimation methods given in [1] for NO₂ and NO₃ and in [4] for N₂O₅, the overall uncertainties in the retrieved concentrations are 9.1% for NO₂, 11% for NO₃, ~10% for N₂O₅, and 3.2% for O₃ measured with an O₃ photometric analyzer.

Allan variance analysis [4-5] was carried out to determine the optimum integration time and the corresponding DL, and the results are shown in Figures S5(a, b). The system stabilization times for the LED-IBBCEAS and the EC-QCL MPC apparatus were approximately 500 s and 600 s, respectively, which resulted in DLs of 0.4 pptv for NO₃, 0.4 ppbv for NO₂ and 2.1 ppbv for N₂O₅. Although a higher DL could be obtained with longer integration times of 500 s for NO₃ and 600 s for N₂O₅, a 25 s integration time is a good compromise between DL and the time response required to measure real-time concentrations of N₂O₅ in our study.

In the present work, the measurement precision and DL at an integration time of 25 s were investigated by measuring residual NO₃, NO₂, N₂O₅ and O₃ mixing, which is similar with the method reported in [6]. All measurements were committed to a clean chamber after flushing with synthetic clean air overnight ("zero air" data). In Figures S6(a-d), the frequency distributions of zero-NO₃, zero-NO₂, zero-N₂O₅ and zero-O₃ measurements are shown. A Gaussian distribution was fitted to the histograms to visualize the mean of the zero measurement precision). Measurement precisions of 1.8 pptv, 1.8 ppbv, 11.7 ppbv and 0.3 ppbv were found for NO₃, NO₂, N₂O₅, and O₃, respectively. The calculated mean NO₃, NO₂ and N₂O₅ mixing ratios are very close to the deduced DL from the spectral fit in Figs. 2 and 3. The fitted mean O₃ mixing ratios deviate no more than \pm 0.2 ppbv from zero.

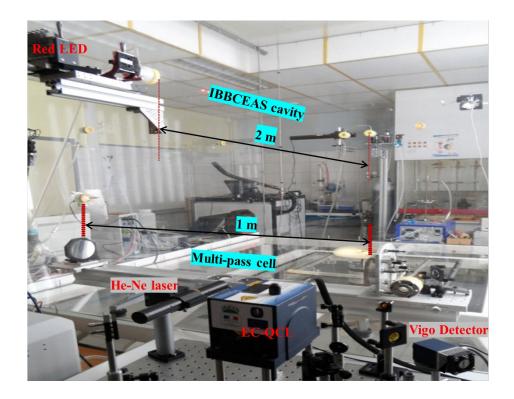


Figure S1. Picture of the LED-IBBCEAS and EC-QCL MPC setups installed in the present atmospheric simulation chamber for simultaneous measurements of NO_3 , NO_2 and N_2O_5 concentrations.

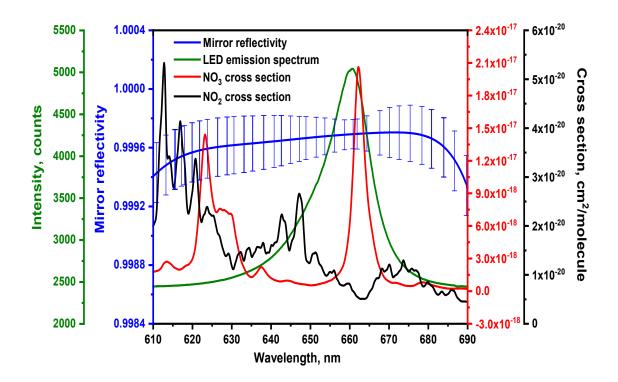
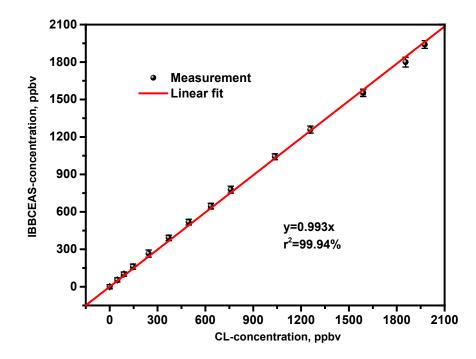
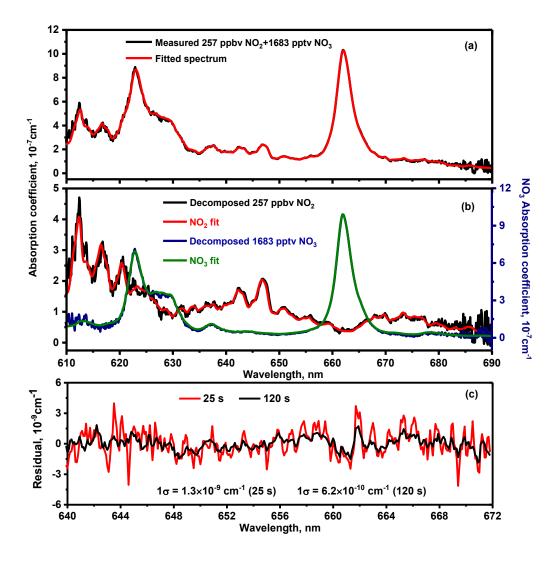
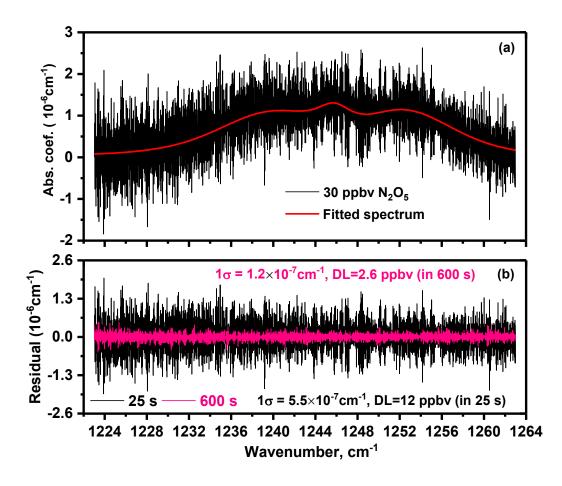
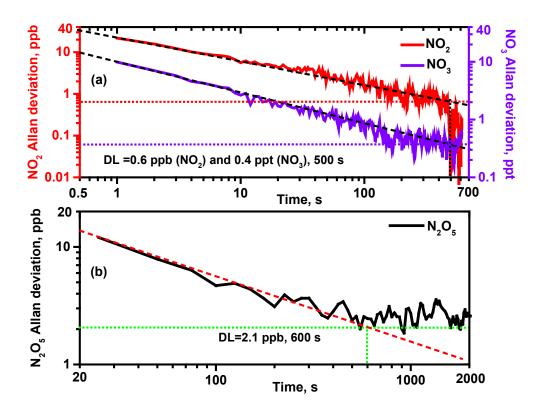


Figure S2. NO_2 and NO_3 absorption cross sections, mirror reflectivity and LED emission spectrum in the wavelength range 610 - 690 nm.


Figure S3. Comparison between the NO₂ concentrations measured by LED-IBBCEAS and chemiluminescence (CL) NO_x analyzer without interferences (i.e., before ozone introduction; 0-1200 s in Fig. 2(a)).

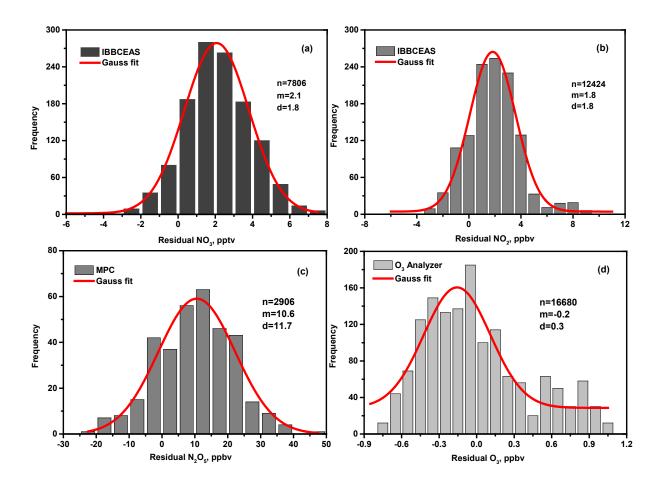

Figure S4. Broadband absorption spectra of 257 ppbv NO₂ and 1.683 ppbv NO₃ in association with the corresponding fit spectra: (a) Recorded IBBCEAS spectrum (black) and its fit (red) leading to 257 ppbv NO₂ and 1.683 ppbv NO₃; (b) The corresponding decomposed spectra; (c) The fit residual in the spectral region of 640-672 nm (chosen for simultaneous measurement of NO₂ and NO₃), used for evaluation of detection limits.

Figure S5. (a): Measured (in 25 s) and fitted EC-QCL MPC direct absorption spectra of 30 ppbv N_2O_5 from 1223 to 1263 cm⁻¹. (b): Fit residual with 25 s and 600 s integration time (used for estimation of detection limit).

Figure S6. Allan deviation for performance evaluation of the developed (a) LED-IBBCEAS and (b) EC-QCL MPC apparatus.

Figure S7. Frequency distribution of zero-NO₃, zero-NO₂, zero-N₂O₅ and zero-O₃ mixing ratios measured by IBBCEAS, EC-QCL MPC and photometric analyzer with an integration time of 25 s. A normal distribution (red line) was fitted to the histograms. *n* is the number of statistically available data points; the 1 σ standard deviation, *d* is a measure of the instrumental precision; *m* denotes the mean retrieved NO₃, NO₂, N₂O₅ and O₃ mixing ratios (standarding for the detection limit) from zero air spectra.

Table S1. Rate constants (k_{C3H6O} in 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹) for the reaction of NO₃ with propanal (C₃H₆O) determined at 293±2 K and atmospheric pressure and literature data for comparison.

Ref. No. (m)	<i>k</i> _{С3H6O}	Temperature (K)	Measurement technique ^a	References*
3	8.94±6.18	298	Eq. calculation	[7] (Cabañas et al., 2001)
4	6.0±0.6	298±2	AR (DF-LIF)	
5	5.8±1.0	300±3	AR (DOAS and GC)	[8] (Bossmeyer et al., 2006)
6	5.80±0.48	298±2	RR	[7] (D'Anna and Nielsen, et al., 1997)
7	7.28±0.41	296±2	RR	[7] (Papagni et al., 2000)
8	6.18±0.57	298±2	RR	[7] (D'Anna et al.,2001)

^aDF-LIF: Discharge flow tube reactor with laser-induced fluorescence; DOAS: Differential Optical Absorption Spectroscopy GC: dual-column gas-chromatograph with cryo-focus module and two flame ionization detectors RR-relative rate method; AR.: Absolute Rate method. Here, [7] stands for the citation from page 3804 of review reference 7.

Table S2. Rate constants (k_{C5H8} in 10⁻¹³ cm³ molecule⁻¹ s⁻¹) for reactions of NO₃ with isoprene (C₅H₈), determined at 293±2 K and atmospheric pressure, and literature data.

Ref. No. (m)	k _{C5H8}	Temperature (K)	Measurement technique ^a	References	
3	13.0±1.4	298	AR (DF-MS)	[7] (Benter and Schindler, 1988)	
4	6.69±1.59	298	Eq. calculation	[7] (Dlugokencky and Howard, 1989)	
5	6.52±0.31	293	AR (F-LIF)		
6	7.30±0.44	298	AR (DF-MS)	[7] (Wille et al., 1991)	
7	8.26±0.60	298	AR (DF-MS)	[7] (Wille et al., 1991; Lancar et al., 1991)	
8	10.7±2.0	295±2	AR (PR-A)	[7] (Ellermann et al., 1992)	
9	7.3±0.2	298±2	AR (F-CIMS)	[7] (Suh et al., 1992)	
10	5.94±0.16	295±1	RR	[7] (Atkinson et al., 1984)	
11	12.1±2.0	298±2	RR	[7] (Barnes et al., 1990)	
12	6.86±0.55	298	RR	[7] (Berndt and Böge, 1997)	
13	5.33±0.21	296±2	RR	[7] (Stabel et al., 2004)	
14	7.0±0.6	296±2	RR		
15	6.13±0.12	295±2	RR	[7] (Zhao et al., 2011)	

^aDF-MS: Discharge flow-mass spectrometer; PR-A: pulse radiolysis combined with kinetic ultraviolet visible absorption spectroscopy; F-LIF: Flow tube reactor with laser-induced fluorescence; F-CIMS: Fast-flow reactor coupled to chemical ionization mass spectrometry. RR-Relative Rate method; AR: Absolute Rate method. Here, [7] stands for the citation from page 3796 of review reference 7.

Table S3. Rate constant (k_{CH2O} in 10⁻¹⁶ cm³ molecule⁻¹ s⁻¹) for reactions between NO₃ and formaldehyde (CH₂O) determined at 293±2 K and atmospheric pressure and literature data.

Ref. No. (m)	kch20	Temperature (K)	Measurement technique	References
3	5.8±0.4	300±1	(AR) N ₂ O ₅ decay-FTIR ^a	[7] (Cantrell et al., 1985)
4	5.2±0.9	298±2	(AR) NO ₃ absorption-FTIR	[7] (Doussin et al., 2003)
5	4.75±0.39	298±1	RR	[9] (Atkinson et al., 1984c)
6	7.2±1.1	298±2	RR	[7] Cantrell et al., 1985
7	11.5±2.4	295±2	RR	[7] (Hjorth, 1988)

^aFTIR: Fourier transform infrared spectroscopy; AR: absolute rate method; RR-relative rate method. Here, [7] stands for the citation from page 3800 of review reference 7.

References

- T. Wu, C. Coeur-Tourneur, G. Dhont, A. Cassez, E.; Fertein, X. He and W. Chen, Application of IBBCEAS to kinetic study of NO₃ radical formation from O₃+NO₂ reaction in an atmospheric simulation chamber, J. Quant. Spectrosc. Rad. Transfer, 2014, 133, 199–205.
- S. Voigt, J. Orphal and J. P. Burrows, The temperature and pressure dependence of the absorption cross-sections of NO₂ in the 250-800 nm region measured by Fourier transform spectroscopy, J. Photochem. Photobiol. A: Chem., 2002, 149, 1-7.
- 3. J. Orphal, C. E. Fellows and P.-M. Flaud, The visible absorption spectrum of NO₃ measured by high-resolution Fourier transform spectroscopy, J. Geophys. Res., 2003, **108**, D3, 4077.
- H. Yi, T. Wu, A. Lauraguais, V. Semenov, C. Coeur, A. Cassez, E. Fertein, X. Gao and W. Chen, High accuracy and high-sensitivity spectroscopic measurement of dinitrogen pentoxide (N₂O₅) in an atmospheric simulation chamber using a quantum cascade laser, Analyst, 2017, 142, 4638–4646.
- H. Yi, T. Wu, G. Wang, W. Zhao, E. Fertein, C. Coeur, X. Gao, W. Zhang and W. Chen, Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy, Opt. Express, 2016, 24, A781-A790.
- H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, J. N. Crowley, W. P. Dubé, H. Fuchs, R. Häseler, U. Heitmann, R. L. Jones, A. Kiendler-Scharr, I. Labazan, J. M. Langridge, J. Meinen, T. F. Mentel, U. Platt, D. Pöhler, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. J. L. Shillings, W. R. Simpson, J. Thieser, R. Tillmann, R. Varma, D. S. Venables and A. Wahner, Intercomparison of NO₃ radical detection instruments in the atmosphere simulation chamber SAPHIR, Atmos. Meas. Tech., 2013, 6, 1111-1140.
- R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi and J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II-gas phase reactions of organic species, Atmos. Chem. Phys., 2006, 6, 3625–4055.
- J. Bossmeyer, T. Brauers, C. Richter, F. Rohrer, R. Wegener and A. Wahner, Simulation chamber studies on the NO₃ chemistry of atmospheric aldehydes, Geophys. Res. Lett., 2006, **33**, L18810, doi:10.1029/2006GL026778.
- R. Atkinson, C. N. Plum, W. P. L. Carter, A. M. Winer and J. N., Jr. Pitts, Rate constants for the gas-phase reactions of nitrate radicals with a series of organics in air at 298±1K, J. Phys. Chem., 1984, 88, 1210-1215.