Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Electronic Supplementary Information

Clarification of acid site location in MSE-type zeolites by spectroscopic approaches combined with catalytic activity: Comparison between UZM-35 and MCM-68

Hiroto Toyoda,^{a, #} Ryota Osuga,^{b, #} Yong Wang,^a Sungsik Park,^a Koji Yazawa,^c Hermann Gies,^{d, e} Christopher J. Gilbert,^f Bilge Yilmaz,^f C.P. Kelkar,^f and Toshiyuki Yokoi ^{a, e*}

a Institute for Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

b Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, Miyagi 980-8577, Japan

c JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan

d Institute of Geology, Mineralogy und Geophysics, Ruhr-University Bochum, 44780 Bochum, Germany

e Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

f R&D Refining Catalysts, BASF Corporation, 25 Middlesex-Essex Turnpike, Iselin, 08830 Iselin, USA

Author information

Corresponding Author

*E-mail; yokoi@cat.res.titech.ac.jp

Tel: +81 (0)45 924 5430

Notes: *These authors, H. Toyoda and R. Osuga contributed equally. The authors declare no competing financial interest.

Calculating methods for conversion and selectivity.

The conversion and selectivity in the catalytic reactions were calculated by following equations Eq. S1 and S2,

Conversion of substrate =
$$1 - \frac{amount\ of\ substrate\ (in\ reacted\ gas)}{amount\ of\ detected\ compounds\ (in\ reacted\ gas)} x\ 100$$
 (Eq. S1)

$$Product \ distribution = \frac{amount \ of \ the \ target \ product}{amount \ of \ detected \ products \ (in \ reacted \ gas)} x \ 100$$
(Eq. S2)

Table S1 Physicochemical properties of control samples.

Samples	Si/Al (-)	$S_{\mathrm{BET}}^{}}}$ $(\mathrm{m}^2~\mathrm{g}^{-1})$	$V_{\text{micro}}^{\text{b}}$ $(\text{cm}^3 \text{g}^{-1})$	Number of acid sites ^c (mmol g ⁻¹)
ZSM-5	15	472	0.17	0.509
Beta	12.5	596	0.23	0.625

^aBET specific surface area. ^bMicropore volume. Determined by ^cNH₃-TPD.

$$\mathsf{Et_2}^{\oplus}_{\mathsf{N}} \overset{\oplus}{\mathsf{N}} \mathsf{Et_2} \qquad \overset{\oplus}{\mathsf{N}}$$

Scheme S1 OSDAs used for synthesis of (a) MCM-68 and (b) UZM-35.

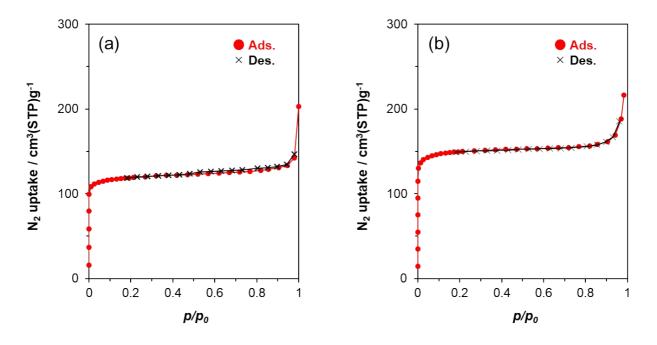


Fig. S1 N₂ adsorption-desorption isotherms of (a) UZM-35 and (b) MCM-68.

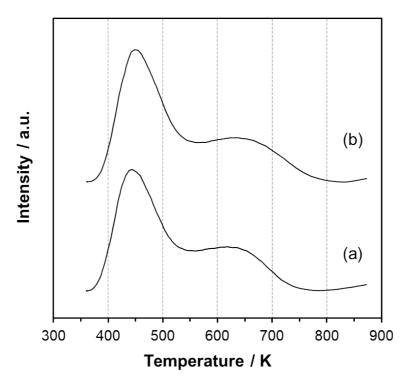


Fig. S2 NH₃-TPD profiles of (a) UZM-35 and (b) MCM-68.

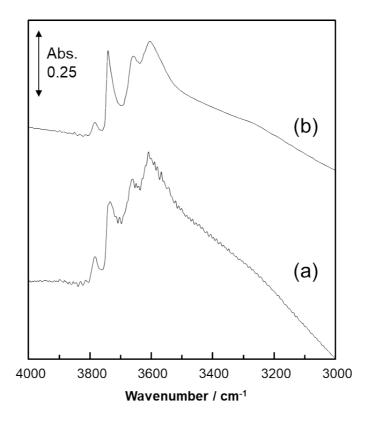


Fig. S3 IR spectra of (a) UZM-35 and (b) MCM-68.

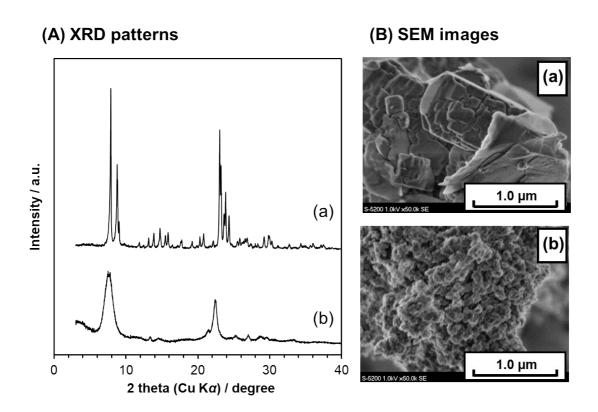


Fig. S4 (A) XRD patterns and (B) SEM images of (a) ZSM-5 and (b) Beta.