Nitro rotation tuned dissociative electron attachment upon targeted

radiosensitizers 4-substituted Z bases

Xixi Cui, Yu Zhao, Changzhe Zhang*, Qingtian Meng*

College of Physics and Electronics, Shandong Normal University, Jinan 250358, Shandong, China *E-mail: zhe852456@126.com and qtmeng@sdnu.edu.cn

Supporting Information

Contents

1. The major bond lengths (Å) and angles (°) of Z base and 4XZ bases: Tables S1-S3.

2. The intrinsic reaction coordinates of 4XZ anion radicals: Fig. S1.

3. The potential energy curves (PECs) of 4XZ bases and anion radicals along the C4-X bond stretching: Fig. S2.

4. The molecular orbitals and energies for the optimized anionic 4XZ: Fig. S3, Tables S4-S5.

5. The molecular orbitals of 4XZ bases: Table S6.

6. The potential energy surfaces (PESs) of 4XZ anion radicals as the function of C4-X bond dissociation and nitro-rotation: Fig. S4.

7. Thermodynamic and kinetic characteristics for degradation of 4XZ bases with the rotational displacements of δ =0°, 30°, 60° and 90°: Table S7.

8. The electron distribution and C_{ele} diagrams of 4XZ anion radicals with the rotational displacements of δ =0°, 20°, 40°, 60° and 80°: Fig. S5, S6 and S7.

9. The geometric configurations of ZP and 4XZP bases: Fig. S8.

10. The major bond lengths (Å) and angles (°) of ZP and 4XZP bases: Tables S8-S10.

11. Electron affinity of ZP and 4XZP bases: Table S11.

12. The molecular orbitals of 4XZP bases: Table S12.

13. The PECs of 4XZP bases and anion radicals along the C4-X bond stretching: Fig. S9.

Neutral	Z	4FZ	4ClZ	4BrZ	4IZ
N1-H12(Å)	1.01	1.01	1.01	1.01	1.01
C2-O9(Å)	1.23	1.23	1.23	1.23	1.23
C4-X(Å)	1.08	1.34	1.75	1.95	2.14
C5-N7(Å)	1.41	1.41	1.42	1.42	1.42
C6-N8(Å)	1.33	1.33	1.33	1.33	1.33
N7-O10(Å)	1.25	1.25	1.25	1.25	1.25
N7-O11(Å)	1.24	1.23	1.23	1.23	1.23
N8-H13(Å)	1.01	1.01	1.01	1.01	1.01
N8-H14(Å)	1.01	1.01	1.01	1.01	1.01
O10-N7-O11(°)	121.30	121.13	121.45	121.57	121.47
H13-N8-H14(°)	120.74	120.72	120.36	120.27	120.26
C5-C6-N7-O10(°)	0.28	12.36	25.83	27.78	27.53

Table S1 The major bond lengths (Å) and angles (°) of neutral Z base and 4XZ bases.

Table S2 The major bond lengths (Å) and angles (°) of anionic Z base and 4XZ bases (reactant).

Anion-Reactant	Z	4FZ	4ClZ	4BrZ	4IZ
N1-H12(Å)	1.01	1.01	1.01	1.01	1.01
C2-O9(Å)	1.25	1.24	1.24	1.24	1.24
C4-X(Å)	1.08	1.35	1.76	1.96	2.14
C5-N7(Å)	1.40	1.42	1.43	1.43	1.44
C6-N8(Å)	1.37	1.36	1.36	1.36	1.36
N7-O10(Å)	1.32	1.32	1.32	1.32	1.32
N7-O11(Å)	1.30	1.30	1.30	1.30	1.30
N8-H13(Å)	1.01	1.01	1.01	1.01	1.01
N8-H14(Å)	1.02	1.02	1.02	1.02	1.02
O10-N7-O11(°)	120.17	120.84	120.63	120.54	120.35
H13-N8-H14(°)	117.49	116.19	116.02	115.95	115.52
C5-C6-N7-O10(°)	9.24	33.43	42.30	45.10	47.09

Anion-Product	Z	4FZ	4ClZ	4BrZ	4IZ
N1-H12(Å)	/	1.01	1.01	1.01	1.01
C2-O9(Å)	/	1.22	1.23	1.23	1.23
C4-X(Å)	/	3.97	4.06	2.85	3.01
C5-N7(Å)	/	1.40	1.40	1.41	1.41
C6-N8(Å)	/	1.33	1.33	1.33	1.33
N7-O10(Å)	/	1.25	1.25	1.26	1.26
N7-O11(Å)	/	1.24	1.24	1.24	1.24
N8-H13(Å)	/	1.01	1.01	1.01	1.01
N8-H14(Å)	/	1.01	1.01	1.01	1.01
O10-N7-O11(°)	/	122.08	121.90	121.27	121.25
H13-N8-H14(°)	/	120.45	120.18	120.61	120.64
C5-C6-N7-O10(°)	/	-0.35	-2.51	15.33	15.65

Table S3 The major bond lengths (Å) and angles (°) of anionic Z base and 4XZ bases (product).

Fig. S1 The intrinsic reaction coordinates of 4XZ anion radicals. The energy of the optimized transition state in Fig. 2 is set as reference. (a) 4FZ, (b) 4ClZ, (c) 4BrZ, (d) 4IZ.

Fig. S2 The PECs of 4XZ bases and anion radicals along the C4-X stretching. The energy of the optimized neutral molecule is set as reference. (a) 4FZ, (b) 4ClZ, (c) 4BrZ, (d) 4IZ.

R _{C-I} (Å)	номо	LUMO	R _{C-Br} (Å)	номо	LUMO
2.00		•	1.85		
2.10			1.95		
2.20		11	2.04		and the second s
2.30		0000	2.13		
2.40	ÚŠ.		2.22		
2.60	už.		2.40	аў.	
2.80			2.60	a je se	
3.0	oj.		2.80	a je	

Table S4 The molecular orbitals for the optimized anionic 4XZ at different C-X bond lengths (X=I, Br).

Fig. S3 The molecular orbital energies for the optimized anionic 4XZ as a function of the C-X distance (X=Br, Cl, F).

Table S5 The molecular orbitals for the optimized anionic 4XZ at different C-X bond lengths (X=Cl, F).

Table S6 The molecular orbitals of neutral and anion radicals for 4XZ bases. The purple transparent shade and green transparent shade are for positive and negative parts of the wave function (isovalue = 0.02), respectively.

Fig. S4 The PESs of 4XZ anion radicals as the function of C4-X bond dissociation and nitrorotation. (a) 4FZ, (b) 4ClZ, (c) 4BrZ, (d) 4IZ.

Table S7 Thermodynamic and kinetic characteristics for degradation of 4XZ bases with the rotational displacements of $\delta=0^{\circ}$, 30° , 60° and 90° (eV).

	XZ⁻→TS	XZ ⁻ →[X···Z] ⁻
	$\Delta \mathbf{E}^{\star}$	$\Delta \mathbf{E}_{\mathbf{PC}}$
4FZ-0°	1.1070	1.0851
4FZ-30°	1.3689	1.3331
4FZ-60°	1.3586	1.3536
4FZ-90°	1.5980	1.5840
4ClZ-0°	0.3450	-0.0142
4ClZ-30°	0.4975	0.2037
4ClZ-60°	0.7008	0.4371
4ClZ-90°	0.8634	0.6448
4BrZ-0°	0.0983	-0.2746
4BrZ-30°	0.2254	-0.0935
4BrZ-60°	0.3903	0.1353
4BrZ-90°	0.5572	0.3733
4IZ-0°	0.0466	-0.3231
4IZ-30°	0.1614	-0.1379
4IZ-60°	0.3397	0.1043
4IZ-90°	0.4687	0.2980

Fig. S5 Electron distribution (upper panel) (isovalue=0.002) and C_{ele} diagrams (lower panel) (isovalue=0.002) of 4FZ anions with the rotational displacements of δ =0°, 20°, 40°, 60° and 80°. The solid pink ball represents the centroid of electrons.

Fig. S6 Electron distribution (upper panel) (isovalue=0.002) and C_{ele} diagrams (lower panel) (isovalue=0.002) of 4ClZ anions with the rotational displacements of δ =0°, 20°, 40°, 60° and 80°. The solid orange ball represents the centroid of electrons.

Fig. S7 Electron distribution (upper panel) (isovalue=0.002) and C_{ele} diagrams (lower panel) (isovalue=0.002) of 4IZ anions with the rotational displacements of δ =0°, 20°, 40°, 60° and 80°. The solid iceblue ball represents the centroid of electrons.

Fig. S8 The geometric configurations of ZP and 4XZP bases.

Table S8 The major bond lengths (Å) and angles (°) of neutral ZP and 4XZP bases.

Neutral	ZP	4FZP	4ClZP	4BrZP	4IZP
N1-H12(Å)	1.04	1.04	1.04	1.04	1.04
C2-O9(Å)	1.24	1.24	1.24	1.24	1.24
C4-X(Å)	1.08	1.34	1.75	1.95	2.14
C5-N7(Å)	1.40	1.41	1.41	1.41	1.41
C6-N8(Å)	1.33	1.33	1.33	1.33	1.33
N7-O10(Å)	1.26	1.25	1.25	1.25	1.25
N7-O11(Å)	1.24	1.24	1.24	1.24	1.24
N8-H13(Å)	1.03	1.03	1.03	1.03	1.03
N8-H14(Å)	1.01	1.01	1.01	1.01	1.01
O9…N26(Å)	1.85	1.85	1.85	1.85	1.85
H12…N16(Å)	1.86	1.85	1.86	1.85	1.85
H13…O24(Å)	1.79	1.78	1.78	1.78	1.78
N25-H26(Å)	1.02	1.02	1.02	1.02	1.02
O10-N7-O11(°)	121.04	120.84	121.16	121.28	121.19
H13-N8-H14(°)	121.38	121.26	120.96	120.96	120.96
N1-H12…N16(°)	179.27	178.98	178.84	178.73	178.94
N8-H13…O24(°)	177.77	176.77	176.60	176.69	176.90
O9…H26-N25(°)	176.96	176.59	176.30	176.18	176.07
C5-C6-N7-O10(°)	0.24	11.81	25.56	27.30	27.20

Anion-Reactant	ZP	4FZP	4C1ZP	4BrZP	4IZP
N1-H12(Å)	1.03	1.04	1.04	1.04	1.04
C2-O9(Å)	1.27	1.26	1.26	1.26	1.26
C4-X(Å)	1.08	1.35	1.76	1.96	2.14
C5-N7(Å)	1.40	1.42	1.43	1.43	1.43
C6-N8(Å)	1.35	1.35	1.35	1.35	1.35
N7-O10(Å)	1.32	1.32	1.32	1.32	1.32
N7-O11(Å)	1.30	1.30	1.31	1.31	1.31
N8-H13(Å)	1.02	1.02	1.02	1.02	1.02
N8-H14(Å)	1.02	1.02	1.02	1.02	1.02
O9…N26(Å)	1.77	1.80	1.80	1.80	1.80
H12…N16(Å)	1.90	1.88	1.88	1.88	1.88
H13…O24(Å)	1.91	1.91	1.90	1.90	1.90
N25-H26(Å)	1.03	1.03	1.03	1.03	1.03
O10-N7-O11(°)	119.98	120.80	120.60	120.47	120.26
H13-N8-H14(°)	121.81	118.89	118.53	118.34	117.87
N1-H12N16(°)	178.41	177.25	178.38	178.53	177.73
N8-H13…O24(°)	176.90	176.71	176.26	176.43	177.04
O9…H26-N25(°)	179.18	178.65	178.71	178.53	178.45
C5-C6-N7-O10(°)	-8.12	34.88	43.78	46.91	49.08

Table S9 The major bond lengths (Å) and angles (°) of anionic ZP and 4XZP bases (reactant).

Anion-Product	ZP	4FZP	4ClZP	4BrZP	4IZP
N1-H12(Å)	/	1.04	1.04	1.04	1.04
C2-O9(Å)	/	1.24	1.24	1.24	1.24
C4-X(Å)	/	3.98	3.98	2.95	3.05
C5-N7(Å)	/	1.40	1.40	1.41	1.41
C6-N8(Å)	/	1.32	1.33	1.33	1.33
N7-O10(Å)	/	1.25	1.25	1.26	1.26
N7-O11(Å)	/	1.24	1.24	1.24	1.24
N8-H13(Å)	/	1.03	1.03	1.03	1.03
N8-H14(Å)	/	1.01	1.01	1.01	1.01
O9…N26(Å)	/	1.86	1.86	1.84	1.83
H12…N16(Å)	/	1.86	1.86	1.87	1.87
H13…O24(Å)	/	1.78	1.78	1.81	1.82
N25-H26(Å)	/	1.02	1.02	1.02	1.02
O10-N7-O11(°)	/	121.81	121.80	121.15	121.07
H13-N8-H14(°)	/	121.27	121.28	121.38	121.42
N1-H12…N16(°)	/	179.48	179.19	178.96	178.85
N8-H13····O24(°)	/	178.60	178.59	177.82	177.64
O9…H26-N25(°)	/	176.51	176.54	177.25	177.39
C5-C6-N7-O10(°)	/	1.07	1.58	14.58	14.30

Table S10 The major bond lengths (Å) and angles (°) of anionic ZP and 4XZP bases (product).

Table S11 Electron affinity (eV) of ZP and 4XZP bases in water solution.

	VEA (eV)	AEA (eV)	VDE (eV)
ZP	2.712	2.998	3.312
4FZP	2.738	3.139	3.758
4ClZP	2.807	3.223	3.991
4BrZP	2.813	3.244	4.089
4IZP	2.811	3.232	4.134

	Neu	Anion	
	НОМО	LUMO	SOMO
ZP			
4FZP			
4CIZP			
4BrZP			
4IZP			

Table S12 The molecular orbitals of neutral and anion radicals for 4XZP bases. The purple transparent shade and green transparent shade are for positive and negative parts of the wave function (isovalue = 0.02), respectively.

Fig. S9 The PECs of 4XZP bases and anion radicals along the C4-X bond stretching. The energy of the optimized neutral molecule is set as reference. (a) 4FZP, (b) 4ClZP, (c) 4BrZP, (d) 4IZP.