First-order hyperpolarizabilities of propellanes: Elucidating structure-property relationships

ELECTRONIC SUPPLEMENTARY INFORMATION

Bartosz Krajewski,^a Swati Singh Rajput,^b Marta Chołuj,^c Elżbieta Wojaczyńska,^c Andrzej Miniewicz,^c Md. Mehboob Alam,^{*,b} Robert Zaleśny^{*,c}

^a Department of Theoretical Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL–50370 Wrocław, Poland
^b Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, Chhattisgarh – 492015, India
^c Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL–50370
^w Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL–50370
^w Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL–50370
^w Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL–50370

Table S1: Vectorial electronic and harmonic vibrational contributions to the first hyperpolarizability (in au) as computed using aug-cc-pVDZ basis set. The values obtained using 6-31+G basis set are shown in parentheses. Note that the sign differences observed for some compounds (e.g. 4 and 10) are due to different orientation of the dipole moment vector (with an absolute value close to zero).

compound	$oldsymbol{eta}^e_{ }$		$[\mulpha]^{(0,0)}_{ }$
1	196	(239)	3053
2	218	(178)	1814
3	246	(284)	3291
4	-521	(-553)	-5997
5	112	(55)	538
6	247	(177)	1442
7	534	(537)	3307
8	212	(236)	2839
9	251	(290)	3358
10	449	(-489)	-1481
11	1198	(1367)	7330
12	368	(405)	3060
13	710	(811)	5862
14	214	(231)	-226
15	1087	(1326)	6896
16	22	(-121)	-2117

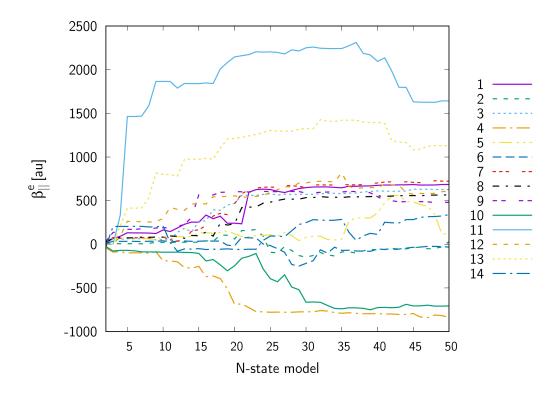


Figure S1: Convergence of the electronic first hyperpolarizability (in au) for **11-14** with the number of electronic states (*N*-state model accounts also for electronic ground state). Calculations were performed at CAM-B3LYP/6-31+G level of theory.