Encoding hexanitrobenzene (HNB) and 1,3,5-triamino-2,4,6-trinitrobenenze

(TATB) as two distinctive energetic nitrobenzene compounds by machine learning

Rong Wang, [†] Jian Liu, [†] Xudong He, [†] Weiyu Xie, ^{*†} and Chaoyang Zhang^{*†,‡}

[†] Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), P. O. Box 919-311, Mianyang, Sichuan 621900, China.

[‡]Beijing Computational Science Research Center, Beijing 100048, China.

Supplementary information

Table of contents

- S1: HOF calculations for a solid.
- **S2: BDE calculations.**
- S3: v_D calculations.
- S4: Oxygen balance (OB%) definition
- **S5: ML results of BDE**
- **S6:** Top molecules by ρ_{ML} and ν_{DML} .
- S7: Performance of ML in predicting BDE of C-NO₂ and N-NO₂.
- **S8: References**

S1: HOF calculations for a solid.

(A) HOF calculations of gaseous molecules

As for the isodesmic reaction, one example of the isodesmic reaction for TATB (compound A) is illustrated in Figure S1. The heat of reaction ΔH_{298} at 298 K was calculated on the level of B3LYP method/6-31g(d) with following eq 1:

Figure S1. Isodesmic reaction designed for calculating HOF of TATB.

$$\Delta H_{298} = \Delta H_{f, P} - \Delta H_{f, R} \tag{1}$$

where $\Delta H_{f,R}$ and $\Delta H_{f,P}$ represent the HOFs of reactants and products at 298 K, respectively. For compounds in the isodesmic reactions with available data, they were directly adopted, as shown in Table S1.

Name	Molecular structural formula	ΔH_{fExp}^{g}
Benzene	PhH	82.9
Nitrobenzene	PhNO ₂	68.5
Phenol	PhOH	-96.4
Tolune	PhCH ₃	50.5
Benzoic acid	PhCOOH	-294.0
Anisole	PhOCH ₃	-67.9
Aniline	PhNH ₂	87.5
Acetophenone	PhCOCH ₃	-86.7
Benzaldehyde	PhCHO	-36.7
Benzonitrile	PhCN	215.7
Benzamide	PhCONH ₂	-100.9
Ethoxybenzene	PhOCH ₂ CH ₃	-101.6
Ethylbenzene	PhCH ₂ CH ₃	29.9

<u>Table S1. The HOFs of references compounds from CRC handbook.</u> The unit of ΔH_{fExp}^{g} is kJ/mol.

For the compounds in the isodesmic reactions without available experimental HOFs, the atomization scheme was employed with calculations on the G3 level to predict their HOFs, as shown in Table S2. By means of the atomization scheme, the standard HOF of a molecule $({}^{\Delta H_{f}^{g}})$ can be calculated by eq 2.

$$\Delta H_{\rm f}^{\rm g} = \Delta E_{298} + \Delta (PV) = \Delta E_0 + \Delta E_{ZPE} + \Delta E_T + \Delta nRT \qquad (2)$$

where ΔE_0 means the change in total energy between the products and reactants at 0 K; ΔE_{ZPE} is the value of difference between the zero-point energies of the products and reactants at 0 K; ΔE_T is the thermal correction from 0 to 298 K. The Δ (PV) value means the PV work term and equals Δ nRT for the reactions of an ideal gas. For the isodesmic reaction in this work, $\Delta n = 0$, so Δ (PV) = 0. From Table S2, we can confirmed that the largest error is only 6.9 kJ/mol, showing the high reliability of the G3 method.

Table S2. ${}^{\Delta H_{f}^{g}}$ of mono-substituted benzene molecules used for designing isodesmic reactions. ${}^{\Delta}$	$\Delta \mathbf{H}^{g}_{\mathbf{f}^{Exp}}$ and $\Delta \mathbf{H}^{\mathbf{s}}_{\mathbf{f}\mathbf{G}}$
denote the ΔH_{f}^{g} derived from experimental measurements and G3 calculations in kJ/mol. respe-	ctivelv.

F	unctional group]	Benzene based compound			
Name	Structure	Symbol	Name	Structure	$\Delta \mathbf{H}_{\mathbf{fExp}}^{\mathbf{s}}$	ΔH^{s}_{fG3}	Error
hydro	H	-H	benzene	Ph-H	82.9	87.3	4.4
nitro	O ^{́N⁺} O⁻	-NO ₂	nitrobenzene	Ph ^N ⁺ O ⁻	68.5	63.4	-5.1
hydroxy	о́н	-OH	phenol	Ph-OH	-96.4	-89.5	6.9
methoxy	O−CH ₃	-OCH ₃	anisole	Ph ^{CO} CH ₃	-67.9	-69.3	-1.4
methyl	ĊH ₃	-CH ₃	toluene	Ph-CH ₃	50.5	54.2	3.7
carboxy	HO ^{_C} `O	-COOH	benzoic acid	O Ph OH	-294.0	-294.3	-0.3
amino	NH ₂	-NH ₂	aniline	Ph-NH ₂	87.5	92.2	4.7
cyano	CĖN	-CN	benzonitrile	Ph─≡N	215.7	218.6	2.9
acetyl	H₃C ^{∠C} O	-COCH ₃	acetophenone	Ph CH ₃	-86.7	-81.5	5.2
formyl	HC=O	-CHO	benzaldehyde	Ph	-36.7	-34.9	1.8

acetylamino	O HN CH3	-NHCOCH ₃	N-phenylacetamide	Ph-N_CH ₃		-105.0	
tert-butyl	СН ₃ H ₃ C ^{-С•} СН ₃	-C(CH ₃) ₃	tert-butylbenzene	H ₃ C _{CH₃} Ph _{CH₃}	-23.0	-22.8	0.2
dimethylamino	H ₃ C ^{∕N} ,CH ₃	-N(CH ₃) ₂	N,N-dimethylaniline	CH ₃ Ph ^{-N} CH ₃		102.3	
carbamoyl	H₂N ^{∕C} SO	-CONH ₂	benzamide	Ph NH ₂	-100.9	-94.5	6.4
ethanoxy	о́∕сн₃	-OCH ₂ CH ₃	ethoxybenzene	Ph ^O , CH ₃	-101.6	-99.8	1.8
isopropyl	H H₃C ^Ć CH₃	-CH(CH ₃) ₂	cumene	CH ₃ Ph CH ₃		4.9	
acetoxy	о О СН ₃	-OOCCH ₃	phenyl acetate	$Ph \overset{O}{\downarrow} CH_3$		-275.0	
hydroxymethyl	H₂Ċ−OH	-CH ₂ OH	phenylmethanol	PhOH		-88.5	
carboxymethyl	0 Н₂С́ОН	-CH ₂ COOH	phenylacetic acid	Ph OH		-297.3	
(hydroxyimino)m ethyl	нс́∽ [№] `он	-CHNOH	benzaldehyde oxime	Ph N OH		134.5	
hydrazinecarbony 1	$0 \approx \frac{H}{C^{N}} N_{NH_2}$	-CONHNH ₂	benzohydrazide	Ph NH_2 H		21.0	
methylamino	HN-CH₃	-NHCH ₃	N-methylaniline	$\frac{H}{Ph}$ CH ₃		97.9	
ethyl	H₂C−CH₃	-CH ₂ CH ₃	ethylbenzene	Ph CH ₃	29.9	32.3	2.4
formamino	HŃ́∕∿O	-NHCHO	N-phenylformamide	Ph ^{-N} _O		-55.7	
prop-2-yn-1-oxy	oCH	-OCH ₂ CCH	(prop-2-yn-1- yloxy)benzene	Ph ⁻⁰ CH		191.6	
isopropylamino	Н₃С└СН₃	- NHCH(CH ₃) 2	N-isopropylaniline			35.6	
ethynyl	СЕСН	-CCH	ethynylbenzene	Ph─≡CH		322.5	
methylcarbamoyl	$O_{{\sim}C^{-}}N_{CH_{3}}^{H}$	-CONHCH ₃	N-methylbenzamide	Ph N ^{CH} ₃		-96.1	

N'- hydroxycarbami midoyl	H₂N∖ċ́∽N∖OH	-CNH ₂ NOH	N'- hydroxybenzimidam ide	Ph NH2 Ph N-OH	114.0	
cyanomethanoxy	ó∕∖≋ _N	-OCH ₂ CN	phenoxyacetonitrile	Ph ⁻⁰	90.4	
cyanomethyl	H₂C ⁱ ─≡N	-CH ₂ CN	phenylacetonitrile	Ph	201.3	
1- (hydroxyimino)et hyl	H₃C、ċ∽N、OH	-CCH ₃ NOH	1-phenylethan-1-one oxime	CH ₃ Ph N-OH	77.3	
methoxymethoxy	0OCH3	- OCH ₂ OCH ₃	(methoxymethoxy) benzene	Ph ^O CH ₃	-225.7	
propionyl	^O ≈;∕∼ _{CH3}	-COCH ₂ CH ₃	propiophenone	Ph CH ₃	-103.7	
propylamino	HN. CH3	- NHCH ₂ CH ₂ CH ₃	N-propylaniline	Ph ^{-N} CH ₃	48.2	
methyl(nitro)ami no	0 H₃C _{`N} ["] N ⁺ O-	-NCH ₃ NO ₂	<i>N</i> -methyl- <i>N</i> - phenylnitramide	O −O´ ^N [™] N [∠] CH ₃ Ph	132.8	
azido	N=N⁺=N⁻	-NNN	azidobenzene	Ph ^{~N} [×] N [*] _N	419.9	
3-oxoprop-1-en- 1-yl	нс	-СНСНСНО	cinnamaldehyde	Ph	27.9	
2- hydroxypropan- 2-yl	он н₃с ^{∠С} `сн₃	-COH(CH ₃) ₂	2-phenylpropan-2-ol	H ₃ C Ph CH ₃	-170.9	
prop-1-en-1-yl	нс́∽сн₃	-CHCHCH ₃	prop-1-en-1- ylbenzene	Ph CH ₃	120.8	

(B) HOF calculations for a solid

As most energetic compounds are in the solid state, the calculation of detonation properties requires solid-phase heat of formation (${}^{\Delta H}{}^{s}_{f}$). According to Hess's law of constant heat summation, the solid-phase heat of formation can be acquired from the gas-phase heat of formation (${}^{\Delta H}{}^{g}_{f}$) and heat of sublimation (${}^{\Delta H}{}^{s}_{sub}$):

$$\Delta H_f^s = \Delta H_f^g - \Delta H_{sub}$$

As for the heat of sublimation, Politzer et al.³ reported that it correlates with the molecular surface

area and the electrostatic interaction $v\sigma_{tot}^2$ index for energetic compounds. The empirical expression of this approach is as follows:

$$\Delta H_{sub} = aA^2 + b(v\sigma_{tot}^2)^{0.5} + c$$

where *A* represents the surface area of the 0.001 electrons bohr⁻³ isosurface of the electronic density of the molecule, v describes the degree of balance between positive potential and negative potential on the isosurface, and σ_{tot}^2 means a measure of the variability of the electrostatic potential on the molecular surface. The coefficients a, b, and c have been obtained by Rice et al. for the energetic materials: *a* = 2.670×10^{-4} kcal mol⁻¹ Å⁻⁴, *b* = 1650 kcal mol⁻¹, and *c* = 2.966 kcal mol⁻¹.⁴ The descriptors *A*, v and σ_{tot}^2 were calculated using the Multiwfn program.⁵

S2: BDE calculations.

Table S3. The calculated BDE (in kJ/mol) of forty mono-substituted benzene molecules. BDE_{G3} and BDE_{b3lyp} denote BDE calculated by B3LYP/6-31g(d)+D3 and G3 methods, respectively.

Name	Structure	BDE reaction	BDE _{G3}	BDE _{b3lyp}	Error
benzene	Ph-H	$Ph \rightarrow Ph\bullet + \bullet H$	472.6	458.9	-2.9%
nitrobenzene	O " Ph N [↓] O ⁻	$PhNO_2 \rightarrow Ph\bullet + \bullet NO_2$	316.0	300.0	-5.1%
phenol	Ph-OH	$PhOH \rightarrow Ph\bullet + \bullet OH$	467.8	455.7	-2.6%
· 1	0	$PhOCH_3 \rightarrow Ph \bullet + \bullet OCH_3$	435.1	406.2	-6.6%
anisole	Ph ^C CH ₃	$PhOCH_3 \rightarrow PhO\bullet + \bullet CH_3$	266.0	253.6	-4.7%
toluene	Ph-CH ₃	$PhCH_3 \rightarrow Ph\bullet + \bullet CH_3$	430.4	418.9	-2.7%
benzoic acid	O Ph OH	$PhCOOH \rightarrow Ph \bullet + \bullet COOH$	463.7	445.7	-3.9%
aniline	Ph-NH ₂	$PhNH_2 \rightarrow Ph\bullet + \bullet NH_2$	436.2	419.8	-3.8%
benzonitrile	Ph─≡N	$PhCN \rightarrow Ph\bullet + \bullet CN$	572.3	564.2	-1.4%
	0	$PhCOCH_3 \rightarrow Ph\bullet + \bullet COCH_3$	416.5	401.3	-3.6%
acetophenone	Ph CH ₃	$PhCOCH_3 \rightarrow PhCO\bullet + \bullet CH_3$	346.0	341.2	-1.4%
benzaldehyde	Ph O	$PhCHO \rightarrow Ph\bullet + \bullet CHO$	419.8	409.6	-2.4%
		$\begin{array}{l} PhNHCOCH_3 \rightarrow Ph\bullet +\\ \bullet NHCOCH_3 \end{array}$	469.7	442.6	-5.8%
N-phenylacetamide	Ph ^{-N} CH ₃ O	$\begin{array}{c} PhNHCOCH_3 \rightarrow PhNH\bullet +\\ \bullet COCH_3 \end{array}$	351.2	352.0	-2.0%
		$\begin{array}{c} PhNHCOCH_3 \rightarrow PhNHCO\bullet +\\ \bullet CH_3 \end{array}$	359.0	336.3	-4.2%
tert-butylbenzene	H ₃ C CH ₃ CH ₃	$PhC(CH_3)_3 \rightarrow Ph \bullet + \bullet C(CH_3)_3$	422.0	380.1	-9.9%
N,N-dimethylaniline	CH ₃ Ph ^{-N} CH ₃	$PhN(CH_3)_2 \rightarrow Ph \bullet + \bullet N(CH_3)_2$	404.4	372.4	-7.9%
	0	$PhCONH_2 \rightarrow Ph \bullet + \bullet CONH_2$	427.6	407.6	-4.7%
benzamide	Ph NH ₂	$PhCONH_2 \rightarrow PhCO\bullet + \bullet NH_2$	403.0	392.9	-2.5%
-dd	0 CH2	PhOCH ₂ CH ₃ → Ph• + •OCH ₂ CH ₃	432.6	402.0	-7.1%
etnoxybenzene	Ph	$\begin{array}{c} PhOCH_2CH_3 \rightarrow PhO\bullet +\\ \bullet CH_2CH_3 \end{array}$	276.7	255.5	-7.6%

cumene	CH ₃ Ph CH ₃	PhCH(CH ₃) ₂ → Ph• + •CH(CH ₃) ₂	429.8	398.7	-7.2%
phenyl acetate	Ph ^O CH ₃ O	$PhOOCCH_3 \rightarrow Ph \bullet + \bullet OOCCH_3$	447.0	396.9	-11.2%
phenylmethanol	Ph OH	$PhCH_2OH \rightarrow Ph\bullet + \bullet CH_2OH$	417.3	402.9	-3.5%
nhanylagatia goid	РЬСИОН	$\begin{array}{l} PhCH_2COOH \rightarrow Ph\bullet + \\ \bullet CH_2COOH \end{array}$	428.1	405.8	-5.2%
	Ö	$PhCH_2COOH \rightarrow PhCH_2 \bullet + \\ \bullet COOH$	333.2	310.4	-6.8%
hanzaldahuda ovima		PhCHNOH \rightarrow Ph• + •CHNOH	491.8	461.8	-6.1%
benzaidenyde banne	Ph´ N	PhCHNOH \rightarrow PhCHN• + •OH	246.4	222.7	-9.6%
han shudaasi da	0	$\begin{array}{l} PhCONHNH_2 \rightarrow Ph\bullet + \\ \bullet CONHNH_2 \end{array}$	435.1	413.2	-5.0%
benzonydrazide	Ph N NH ₂ H	$\begin{array}{l} PhCONHNH_2 \rightarrow PhCONH \bullet + \\ \bullet NH_2 \end{array}$	310.0	294.5	-5.0%
N matherianiling	H	$PhNHCH_3 \rightarrow Ph\bullet + \bullet NHCH_3$	426.6	401.9	-5.8%
	Ph ^{-IN} ^{CH} 3	$PhNHCH_3 \rightarrow PhNH\bullet + \bullet CH_3$	296.4	285.3	-3.8%
ethylbenzene	Ph CH ₃	$PhCH_2CH_3 \rightarrow Ph\bullet + \bullet CH_2CH_3$	431.6	405.6	-6.0%
N-phenylformamide	Ph ^{-N} _O	PhNHCHO \rightarrow Ph• + •NHCHO	475.4	449.2	-5.5%
(man 2 yr 1 ylayy)hanzana	CH	$\begin{array}{l} PhOCH_2CCH \rightarrow Ph\bullet + \\ \bullet OCH_2CCH \end{array}$	434.9	403.5	-7.2%
(prop-2-yii-1-yloxy)benzene	Ph	$PhOCH_2CCH \rightarrow PhO\bullet +$ •CH_2CCH	215.7	184.4	-14.5%
AV · 1 · 1·	CH ₃	PhNHCH(CH ₃) ₂ \rightarrow Ph• + •NHCH(CH ₃) ₂	431.8	405.5	-6.1%
/v-isopropylaniline	H CH ₃	PhNHCH(CH ₃) ₂ → PhNH• + •CH(CH ₃) ₂	309.5	280.4	-9.4%
ethynylbenzene	Ph─≡CH	$PhCCH \rightarrow Ph\bullet + \bullet CCH$	591.8	581.6	-1.7%
N mothulhonzomida	0	$\begin{array}{l} PhCONHCH_3 \rightarrow Ph\bullet +\\ \bullet CONHCH_3 \end{array}$	432.4	410.1	-5.2%
	Ph N ^{On3} H	$PhCONHCH_3 \rightarrow PhCO\bullet + \bullet NHCH_3$	401.5	382.1	-4.8%
N'-hydroxybenzimidamide	Ph N ⁻ OH	$PhCNH_2NOH \rightarrow Ph \bullet + $ • CNH_2NOH	470.6	444.8	-5.5%
phenoxyacetonitrile	Ph ⁻⁰	$PhOCH_2CN \rightarrow Ph\bullet + \\ \bullet OCH_2CN$	436.5	405.1	-7.2%

1-phenylethan-1-one oxime	Ph	$PhCH_2CN \rightarrow Ph\bullet + \bullet CH_2CN$	402.2	371.6	-7.6%
1-phenylethan-1-one oxime	CH ₃ Ph N OH	PhCCH ₃ NOH → Ph• + •CCH ₃ NOH	475.1	445.7	-6.2%
		$\begin{array}{l} PhOCH_2OCH_3 \rightarrow Ph\bullet +\\ \bullet OCH_2OCH_3 \end{array}$	425.2	389.9	-8.3%
(methoxymethoxy)benzene	Ph ^O CH ₃	$\begin{array}{l} PhOCH_2OCH_3 \rightarrow PhOCH_2 \bullet + \\ \bullet OCH_3 \end{array}$	365.5	339.5	-7.1%
		$PhOCH_2OCH_3 \rightarrow PhOCH_2O \bullet$ $+ \bullet CH_3$	343.2	324.9	-5.3%
monionhonono	O.	$\begin{array}{l} PhCOCH_2CH_3 \rightarrow Ph\bullet +\\ \bullet COCH_2CH_3 \end{array}$	418.5	401.8	-4.0%
ргорторненоне	Ph CH ₃	$PhCOCH_2CH_3 \rightarrow PhCO + $ • CH_2CH_3	348.1	335.1	-3.7%
N-propylaniline	Ph ^{-N} -CH ₃	$\begin{array}{l} PhNHCH_2CH_2CH_3 \rightarrow Ph\bullet +\\ \bullet NHCH_2CH_2CH_3 \end{array}$	431.8	404.8	-6.3%
N-propylaniline	Ph ^{-N} CH ₃	$PhNHCH_2CH_2CH_3 \rightarrow PhNH\bullet + \bullet CH_2CH_2CH_3$	309.8	288.4	-6.9%
<i>N</i> -propylaniline	Ph ^N CH ₃	PhNHCH ₂ CH ₂ CH ₃ \rightarrow PhNH• + •CH ₂ CH ₂ CH ₃ PhNCH ₃ NO ₂ \rightarrow Ph• + •NCH ₃ NO ₂	309.8 416.9	288.4 391.4	- 6.9%
N-propylaniline N-methyl-N-phenylnitramide	Ph ^{-N} _{CH₃} O ⁻ O ⁻ N ⁺ _N ⁻ CH ₃	PhNHCH ₂ CH ₂ CH ₃ \rightarrow PhNH• + •CH ₂ CH ₂ CH ₃ PhNCH ₃ NO ₂ \rightarrow Ph• +•NCH ₃ NO ₂ PhNCH ₃ NO ₂ \rightarrow PhNCH ₃ • +•NO ₂	309.8 416.9 153.7	288.4 391.4 134.9	-6.9% -6.1% -12.2%
N-propylaniline N-methyl-N-phenylnitramide	H CH ₃ CH ₃	PhNHCH ₂ CH ₂ CH ₃ \rightarrow PhNH• + •CH ₂ CH ₂ CH ₃ PhNCH ₃ NO ₂ \rightarrow Ph• +•NCH ₃ NO ₂ PhNCH ₃ NO ₂ \rightarrow PhNCH ₃ • +•NO ₂ PhNCH ₃ NO ₂ \rightarrow PhNNO ₂ • +•CH ₃	309.8 416.9 153.7 294.1	288.4 391.4 134.9 285.3	-6.9% -6.1% -12.2% -3.0%
N-propylaniline N-methyl-N-phenylnitramide	$\begin{array}{c} H \\ Ph^{N} \\ CH_{3} \\ \end{array}$	PhNHCH ₂ CH ₂ CH ₃ \rightarrow PhNH• + •CH ₂ CH ₂ CH ₃ PhNCH ₃ NO ₂ \rightarrow Ph• +•NCH ₃ NO ₂ PhNCH ₃ NO ₂ \rightarrow PhNCH ₃ • +•NO ₂ PhNCH ₃ NO ₂ \rightarrow PhNNO ₂ • +•CH ₃ PhNNN \rightarrow Ph• + •NNN(•N ₃)	309.8 416.9 153.7 294.1 379.1	288.4 391.4 134.9 285.3 356.2	-6.9% -6.1% -12.2% -3.0% -6.0%
N-propylaniline N-methyl-N-phenylnitramide azidobenzene	$\begin{array}{c} H \\ Ph^{-N} \\ CH_3 \\ \end{array}$	PhNHCH ₂ CH ₂ CH ₃ \rightarrow PhNH• + •CH ₂ CH ₂ CH ₃ PhNCH ₃ NO ₂ \rightarrow Ph• +•NCH ₃ NO ₂ PhNCH ₃ NO ₂ \rightarrow PhNCH ₃ • +•NO ₂ PhNCH ₃ NO ₂ \rightarrow PhNNO ₂ • +•CH ₃ PhNNN \rightarrow Ph• + •NNN(•N ₃)PhNNN \rightarrow PhN• + •N ₂	309.8 416.9 153.7 294.1 379.1 -0.7	288.4 391.4 134.9 285.3 356.2 5.2	-6.9% -6.1% -12.2% -3.0% -6.0% -797.8%
N-propylaniline N-methyl-N-phenylnitramide azidobenzene cinnamaldehyde	$\begin{array}{c} H \\ Ph^{-N} \\ CH_3 \\ \end{array}$	PhNHCH2CH2CH3 \rightarrow PhNH• + •CH2CH2CH3PhNCH3NO2 \rightarrow Ph• +•NCH3NO2PhNCH3NO2 \rightarrow PhNCH3• +•NO2PhNCH3NO2 \rightarrow PhNNO2• +•CH3PhNNN \rightarrow Ph• + •NNN(•N3)PhNNN \rightarrow PhN• + •N2PhCHCHCHO \rightarrow Ph• +•CHCHCHOPh• +	309.8 416.9 153.7 294.1 379.1 -0.7 503.9	288.4 391.4 134.9 285.3 356.2 5.2 489.8	-6.9% -6.1% -12.2% -3.0% -6.0% -797.8% -2.8%
N-propylaniline N-methyl-N-phenylnitramide azidobenzene cinnamaldehyde 2-phenylpropan-2-ol	$\begin{array}{c} H \\ Ph^{-N} \\ CH_{3} \\ \end{array}$	PhNHCH ₂ CH ₂ CH ₃ \rightarrow PhNH• + •CH ₂ CH ₂ CH ₃ PhNCH ₃ NO ₂ \rightarrow Ph• +•NCH ₃ NO ₂ PhNCH ₃ NO ₂ \rightarrow PhNCH ₃ • +•NO ₂ PhNCH ₃ NO ₂ \rightarrow PhNNO ₂ • +•CH ₃ PhNNN \rightarrow Ph• + •NNN(•N ₃)PhNNN \rightarrow Ph• + •N ₂ PhCHCHCHO \rightarrow Ph• +•CHCHCHOPhCOH(CH ₃) ₂ \rightarrow Ph• +•COH(CH ₃) ₂	309.8 416.9 153.7 294.1 379.1 -0.7 503.9 419.6	288.4 391.4 134.9 285.3 356.2 5.2 489.8 386.6	-6.9% -6.1% -12.2% -3.0% -6.0% -797.8% -2.8% -7.8%

S3: v_D calculations.

1. Kamlet–Jacobs equations²:

$$p = 1.558\rho_0^2 \varphi$$
$$v_D = 1.01\varphi^{\frac{1}{2}} (1 + 1.30\rho_0)$$
$$\varphi = 0.489N\overline{M}^{\frac{1}{2}} Q^{\frac{1}{2}}$$

where p is the C-J denotation pressure, in unit of GPa; v_D is the denotation velocity, in unit of km/s; ρ_0 is the density of EMs, in unit of g/cm³; N is the amount of generated gaseous products per gram EMs, in unit of mol/g; \overline{M} is the mean molar mass of gaseous products, in unit of g/mol; Q is the denotation heat of EMs, in unit of J/g.

For EMs of c.f. $C_aH_bO_cN_d$:

(1) When $c \ge 2a + \frac{b}{2}$, the reaction equation is:

$$C_a H_b O_c N_d \rightarrow \frac{1}{2} dN_2 + \frac{1}{2} b H_2 O + a C O_2 + \frac{1}{2} \left(c - \frac{1}{2} b - 2a \right) O_2$$

The mean molar mass of the EM is:

$$M = 12a + b + 16c + 14d$$

$$N, \overline{M} \text{ and } Q \text{ are:}$$

$$N = \frac{1}{4M}(b + 2c + 2d)$$

$$\overline{M} = \frac{28d + 18b + 88a + 16(2c - b - 4a)}{d + b + 2a + (c - \frac{1}{2}b - 2a)} = \frac{24a + 2b + 32c + 28d}{\frac{1}{2}b + c + d} = \frac{4M}{b + 2c + 2d}$$

$$Q = \frac{28.9b + 94.1a - 0.239\Delta H_f^0}{M} \times 4.184 \times 10^3$$

where ΔH_f^0 is the standard formation enthalpy of the EM; $\Delta H_f^0[N_2(g)] = 0$, $\Delta H_f^0[H_2O(g)] = 57.8 \ kcal/mol$, $\Delta H_f^0[CO_2(g)] = 94.1 \ kcal/mol$, $\Delta H_f^0[O_2(g)] = 0 \ kcal/mol$, $\Delta H_f^0[C(s)] = 0 \ kcal/mol$ (2) When $2a + \frac{b}{2} > c \ge \frac{b}{2}$, the reaction equation is:

$$C_{a}H_{b}O_{c}N_{d} \rightarrow \frac{1}{2}dN_{2} + \frac{1}{2}bH_{2}O + \frac{1}{2}\left(c - \frac{1}{2}b\right)CO_{2} + \left[a - \frac{1}{2}\left(c - \frac{1}{2}b\right)\right]C$$

$$N, \overline{M} \text{ and } Q \text{ are:}$$

$$N = \frac{1}{4M}(b + 2c + 2d)$$

$$\overline{M} = \frac{56d + 88c - 8b}{b + 2c + 2d}$$

$$Q = \frac{28.9b + 94.1\left(\frac{c}{2} - \frac{b}{4}\right) - 0.239\Delta H_{f}^{0}}{M} \times 4.184 \times 10^{3}$$

(3) When $\frac{b}{2} > c$, the reaction equation is:

$$C_a H_b O_c N_d \rightarrow \frac{1}{2} dN_2 + cH_2 O + \frac{1}{2} (b - 2c) H_2 + aC$$

$$N, \overline{M} \text{ and } Q \text{ are:}$$

$$N = \frac{1}{2M} (b + d)$$

$$\overline{M} = \frac{2b + 32c + 28d}{b + d}$$

$$\overline{F7} R_a = 0.220 A H^0$$

$$Q = \frac{57.8c - 0.239\Delta H_f}{M} \times 4.184 \times 10^3$$

S4: Oxygen balance (OB%) definition

For EMs in c.f. $C_a H_b O_c N_d$:

$$OB\% = \frac{c - \frac{1}{2}b - 2a}{c} \times 100\%$$

S5: ML results of BDE

Table S4. Test scores of the ML models of BDE. The results of the best models are highlighted in bold.

		Ridge	Lasso	SVR	RFR	GBR	MLP	Ensemble	GRU
BDE _{C-NO2}	RMSE	11.60	11.42	10.96	11.89	11.37	10.60	10.77	11.09
$(kJ \cdot mol^{-1})$	MAE	8.73	8.62	8.11	9.00	8.55	8.02	8.05	8.01

	R ²	0.730	0.738	0.759	0.716	0.741	0.775	0.767	0.753
DDE	RMSE	13.64	13.4	13.91	13.68	13.71	13.97	13.51	13.71
\mathbf{DDE}_{N-NO2}	MAE	10.72	10.61	10.89	10.81	10.81	10.92	10.64	10.85
(KJ.IHOL.)	\mathbb{R}^2	0.258	0.276	0.229	0.254	0.251	0.223	0.272	0.251

S6: Top molecules by ρ_{ML} and ν_{DML} .

Structure	NO ₂ O ₂ N NO ₂ O ₂ N NO ₂ NO ₂			NO ₂ O O ₂ N OH O ₂ N NO ₂ NO ₂	NO ₂ O ₂ N OH O ₂ N OH NO ₂	02N NO2 N NO2 N NO2
ρ	1.942	1.925	1.923	1.916	1.910	1.904
v _D	9266	8897	8910	8664	8539	8701
Structure	NO ₂ O ₂ N OH O ₂ N NO ₂ OH	NO ₂ O ₂ N HO NO ₂ NO ₂	$ \begin{array}{c} NO_2 & \mathbf{O} \\ O_2 N & NH_2 \\ O_2 N & NO_2 \\ NO_2 \end{array} $	NO2 O2N H2N NO2 NO2		
ρ	1.903	1.903	1.899	1.899	1.899	1.897
v_D	8468	8468	8611	8415	8415	8704
Structure	NO ₂ O ₂ N NO ₂ O ₂ N O OH OH	NO ₂ NH ₂ NO ₂ NO ₂	OH O ₂ N NO ₂ O ₂ N NH ₂ NO ₂		$\begin{array}{c} OH \\ O_2N \\ O_2N \\ NO_2 \\ OH \end{array}$	NO2 0 02N OH H2N NO2 NO2
ρ	1.896	1.896	1.896	1.896	1.896	1.895
v_D	8246	8427	8427	8229	8229	8207
Structure	0 ₂ N 0 ₂ N 0 ₂ N NO ₂ NO ₂ OH	NO ₂ O ₂ N NO ₂ HO OH		NO ₂ NO ₂ NO ₂ NO ₂ OH O NO ₂ O	$\begin{array}{c} NO_2 \\ O_2 N \\ O_2 N \\ H_2 N \\ O \end{array} O H$	OH O2N HO NO2 OH
ρ	1.895	1.894	1.893	1.893	1.892	1.887
v_D	8207	8072	8037	8037	8048	7989
Structure				NO2 NO2 NO2		
ρ	1.886	1.886	1.885	1.884	1.884	1.883
v _D	8210	8034	8456	8264	8264	8278

Table S5. Top 30 Molecules by ρ_{ML} , ρ_{ML} and ν_{DML} are in g cm⁻³ and m s⁻¹, respectively.

Table S6. Top 30 Molecules by v_{DML} , ρ_{ML} and v_{DML} are in g cm⁻³ and m s⁻¹, respectively.

	1		8	, I	5	
Structure	0 ₂ N 0 ₂ N 0 ₂ N NO ₂ NO ₂	OH O ₂ N NO ₂ O ₂ N NO ₂ NO ₂	NH ₂ O ₂ N NO ₂ O ₂ N NO ₂ NO ₂	0 ₂ N NO ₂ 0 ₂ N NO ₂ NO ₂ N NO ₂ NO ₂	0 ₂ N 0 ₂ N NO ₂ NO ₂	NO ₂ O ₂ N NO ₂ O ₂ N N _O N _O H
v_D	9266	8910	8897	8889	8790	8723
ρ	1.942	1.923	1.925	1.883	1.874	1.876
Structure	NO ₂ NO ₂ NO ₂ NO ₂ NO ₂ NO ₂ NO ₂	O_2N NO_2 O_2N NO_2 O_2N NO_2	NO_2 O_2N NO_2 NO_2 NO_2	NO ₂ O ₂ N NO ₂ O ₂ N OH NO ₂ OH	NO ₂ O O ₂ N NO ₂ NH ₂ NO ₂ NO ₂	0 ₂ N 0 ₂ N 0 ₂ N NO ₂ OH NO ₂
v_D	8716	8704	8701	8664	8657	8615
ρ	1.878	1.897	1.904	1.916	1.880	1.867

Structure	$\begin{array}{c} NO_2 \\ O_2 N \\ O_2 N \\ NO_2 \\ NO_2 \end{array} \\ NH_2 \\ NO_2 O \end{array}$			$\begin{array}{c c} & NO_2 & NO_2 \\ O_2 N & & N \\ O_2 N & & N \end{array}$	$\begin{array}{c} & NO_2\\ O_2N & NO_2\\ O_2N & NO_2\\ NO_2 & NO_2 \end{array}$	O ₂ N. N O ₂ N NO ₂ O ₂ N NO ₂ NO ₂
v_D	8611	8600	8592	8586	8571	8571
ρ	1.899	1.853	1.876	1.837	1.834	1.834
Structure	NO2 O2N OH O2N N [×] NO2 NO2		$\begin{array}{c} NO_2 \\ O_2N \\ O_2N \\ NO_2 \\ NO_2 \end{array} \\ NO_2 \\ $	O ₂ N NO ₂ O ₂ N NO ₂ NO ₂ N NO ₂	$HO + VO_2 + O_2 $	$\begin{array}{c} NO_2 \\ O_2 N \\ HO \\ NO_2 \\ NO_2 \end{array}$
v_D	8543	8539	8530	8527	8525	8525
ρ	1.860	1.910	1.858	1.849	1.859	1.859
Structure	$\begin{array}{c} NO_2 \\ H_2 N \\ O_2 N \\ NO_2 \end{array} \\ NO_2 \\ NO_2 \end{array}$	$ \begin{array}{c} $	0 ₂ N NO ₂ 0 ₂ N NO ₂ NO ₂	HO NO ₂ NO ₂	OH O ₂ N O ₂ N OH NO ₂ OH	NO ₂ O ₂ N NO ₂ H ₂ N NO ₂ OH
v_D	8524	8524	8511	8468	8468	8456
ρ	1.864	1.864	1.845	1.903	1.903	1.885

S7: Performance of ML in predicting BDE of C-NO₂ and N-NO₂.

Table S7. Comparison of machine-learnt BDE (BDE_ML) and quantum chemistry calculated BDE (BDE_	_QC) of 12
molecules with $v_D > 7000 \text{ m/s}$.	

	v _D _ML (m s ⁻¹)	BDE_ML (kJ mol ⁻¹)	BDE_QC (kJ mol ⁻¹)	Abs_BDE (kJ mol ⁻¹)	BDE_%
1	7609	260	257	3	1.2
2	7052	264	275	-11	-4.1
3	7704	267	271	-4	-1.6
4	7395	279	273	7	2.4
5	7154	285	285	0	-0.1
6	7119	288	297	-9	-3.2
7	7028	289	272	17	6.3
8	7523	291	286	6	2.0
9	7271	296	289	7	2.5
10	7685	296	300	-3	-1.1
11	7207	301	307	-6	-2.1
12	7825	304	301	3	1.1

Figure S2. Molecular structures for BDE verification.

S8: References

- (1) Lide, D. R., *CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data.* CRC press: 1995.
- (2) Atkins, P. W.; De Paula, J.; Keeler, J., Atkins' physical chemistry. 2006.
- (3) Politzer, P.; Murray, J. S., Some perspectives on estimating detonation properties of C, H, N, O compounds. *Central European Journal of Energetic Materials* **2011**, *8* (3), 209-220.
- (4) Rice, B. M.; Byrd, E. F., Evaluation of electrostatic descriptors for predicting crystalline density. *Journal of computational chemistry* **2013**, *34* (25), 2146-2151.
- (5) Fei, T.; Du, Y.; Pang, S., Theoretical design and prediction of properties for dinitromethyl, fluorodinitromethyl, and

(difluoroamino)dinitromethyl derivatives of triazole and tetrazole. RSC Advances 2018, 8 (19), 10215-10227.