Supporting Information

Probing halogen bonding interactions between heptafluoro-2iodopropane and three azabenzenes with Raman spectroscopy and density functional theory

Ethan C. Lambert, Ashley E. Williams, Ryan C. Fortenberry, and Nathan I. Hammer*

Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38655, United States

Table of Contents

Cartesian coordinates of the optimized complexesS3
Simulated Raman spectra at all levels of theory compared to
experiment
Experimental and simulated Raman spectrum of HFP…Pyridine S10
Experimental and simulated Raman spectrum of HFP…Pyrimidine . S12
Experimental and simulated Raman spectrum of HFP…Pyridazine S14
Numbered molecular structures S16
Natural Electron ConfigurationsS17
HFP displacement vectors

Atom	Х	Y	Z
С	3.802068	-1.16662	0.094547
С	5.18654	-1.21566	0.187816
С	5.895577	-0.02197	0.179192
С	5.193936	1.171822	0.077706
С	3.809163	1.122976	-0.01104
Ν	3.123837	-0.02178	-0.00299
Н	6.974755	-0.02203	0.250233
Н	3.212322	-2.07507	0.097913
Н	5.690831	-2.16833	0.265122
Н	5.70413	2.124421	0.06713
Н	3.22507	2.03152	-0.09146
С	-2.48726	1.30687	0.125385
С	-1.89155	-0.02731	-0.3887
С	-2.49676	-1.28009	0.2921
F	-1.97507	-2.39163	-0.24351
F	-2.25443	-1.29039	1.608692
F	-3.82617	-1.33958	0.115604
F	-2.2185	-0.11171	-1.71708
F	-1.95764	2.336691	-0.54805
F	-2.24437	1.484184	1.429942
F	-3.81625	1.352976	-0.05804
I	0.303777	-0.0219	-0.17851

Table S1: Cartesian coordinates (in Å) of the HFP…Pyridine complex optimized at the M06-2X/aVTZ level of theory.

Table S2: Cartesian coordinates (in Å) of the HFP…Pyrimidine complex optimized at the M06	;-
2X/aVTZ level of theory.	

Atom	Х	Y	Z
С	0.033867	-2.96342	0.07551
С	1.229725	-4.85655	0.394219
С	1.655651	-4.39225	1.630694
С	1.195435	-3.14472	2.020007
Ν	0.38277	-2.42502	1.244477
Н	1.545469	-5.82272	0.018164
Н	-0.62604	-2.37728	-0.55256
Н	2.313487	-4.97322	2.260122
Н	1.477876	-2.70577	2.969367
С	-1.34923	2.196281	4.321934
С	-1.17218	2.176039	2.781752

С	-2.43167	2.638217	2.004444
F	-2.18196	2.645769	0.689171
F	-3.47436	1.831502	2.234409
F	-2.78626	3.884604	2.351475
F	-0.18374	3.077512	2.492407
F	-0.20499	1.84002	4.920009
F	-2.31369	1.357112	4.717311
F	-1.66267	3.425079	4.759175
I	-0.55016	0.176838	2.110423
N	0.417888	-4.14739	-0.39048

Table S3: Cartesian coordinates (in Å) of the HFP…Pyridazine complex optimized at the M06-2X/aVTZ level of theory.

Atom	Х	Υ	Z
С	-1.38585	1.990148	4.399675
С	-1.03835	2.029251	2.889999
С	-2.10792	2.74343	2.025197
F	-1.71043	2.789089	0.747759
F	-3.28703	2.112976	2.081442
F	-2.296	4.009984	2.429602
F	0.109375	2.769843	2.776755
F	-0.39059	1.412628	5.086018
F	-2.51199	1.30442	4.628957
F	-1.54566	3.22684	4.896794
I	-0.67003	-0.00331	2.133112
Ν	-0.02011	-2.63327	1.205538
С	0.948852	-3.3543	1.761086
С	1.277832	-4.63485	1.327379
С	0.548753	-5.14639	0.276166
С	-0.45117	-4.33715	-0.25792
Ν	-0.72522	-3.11787	0.194953
Н	2.072277	-5.19175	1.803498
Н	1.470259	-2.87685	2.580258
Н	0.735004	-6.13223	-0.12602
Н	-1.0665	-4.6677	-1.08435

Atom	Х	Y	Z
С	-0.92415	1.296886	0.00245
С	0.594177	1.300067	0.03931
С	1.155121	-0.11084	0.002398
F	0.746785	-0.80286	1.097581
F	-1.41498	0.660703	1.097627
F	-1.36437	0.65434	-1.10984
F	-1.39345	2.569538	-0.02043
F	0.721977	-0.75819	-1.10988
F	2.511041	-0.07391	-0.02055
F	1.01416	1.920441	-1.13987
I	1.319992	2.372061	1.763694

Table S4: Cartesian coordinates (in Å) of HFP optimized at the M06-2X/aVTZ level of theory.

 Table S5: Cartesian coordinates (in Å) of Pyridine optimized at the M06-2X/aVTZ level of theory.

Atom	Х	Y	Z
С	-0.69026	-0.8943	0.00000
С	0.71662	-0.8943	0.00000
С	1.38331	0.3323	0.00000
С	0.62923	1.50709	-0.00024
С	-0.77397	1.40428	-0.00038
Ν	-1.4335	0.22933	-0.00020
Н	2.48185	0.37208	-0.00095
Н	-1.25581	-1.84313	0.00012
Н	1.27135	-1.84121	0.00026
Н	1.11327	2.49201	-0.00034
Н	-1.40732	2.30935	-0.00046

Table S6: Cartesian coordinates (in Å) of Pyrimidine optimized at the M06-2X/aVTZ level of	сf
theory.	

Atom	Х	Y	Z
С	-0.50386	-0.71241	0.00000
Ν	0.85725	-0.71241	0.00000
С	1.44513	0.50232	0.00000
С	0.7019	1.69859	0.00000
С	-0.70106	1.57567	-0.00002
Ν	-1.32035	0.37665	0.00003
н	2.54973	0.51154	-0.00002
н	-1.0002	-1.70491	-0.00003
н	1.19178	2.67806	0.00000
Н	-1.35629	2.465	-0.00002

cheory.			
Atom	Х	Y	Z
N	-1.93365	-0.75381	0.00000
С	-0.56704	-0.75381	0.00000
С	0.17774	0.44049	0.00000
С	-0.54103	1.63871	0.00000
С	-1.94533	1.54378	-0.00001
Ν	-2.58863	0.33804	-0.00001
Н	1.27493	0.42371	-0.00001
Н	-0.08341	-1.74412	-0.00002
Н	-0.03938	2.61464	0.00001
Н	-2.59137	2.43666	-0.00002

Table S7: Cartesian coordinates (in Å) of Pyridazine optimized at the M06-2X/aVTZ level of theory.

Figure S1. Theoretical Raman spectra of the HFP···Pyridine complex with the B3LYP, M06-2X, and ω B97X-D methods and aVTZ basis set compared to experimental results.

Figure S2. Theoretical Raman spectra of the HFP···Pyrimidine complex with the B3LYP, M06-2X, and ω B97X-D methods and aVTZ basis set compared to experimental results.

Figure S3. Theoretical Raman spectra of the HFP····Pyridazine complex with the B3LYP, M06-2X, and ω B97X-D methods and aVTZ basis set compared to experimental results.

Figure S4. Raman spectrum of the HFP····Pyridine complex (purple) compared to the individual molecules' spectra (pyridine, red; HFP blue).

Figure S5. Theoretical Raman spectrum of the HFP…Pyridine complex (purple) compared to the individual molecules' spectra (pyridine, red; HFP blue) all at the M06-2X/aVTZ level of theory.

Figure S6. Raman spectrum of the HFP…Pyrimidine complex (purple) compared to the individual molecules' spectra (pyrimidine, red; HFP blue).

Figure S7. Theoretical Raman spectrum of the HFP…Pyrimidine complex (purple) compared to the individual molecules' spectra (pyrimidine, red; HFP blue) all at the M06-2X/aVTZ level of theory.

Figure S8. Raman spectrum of the HFP····Pyridazine complex (purple) compared to the individual molecules' spectra (pyridazine, red; HFP blue).

Figure S9. Theoretical Raman spectrum of the HFP····Pyridazine complex (purple) compared to the individual molecules' spectra (pyridazine, red; HFP blue) all at the M06-2X/aVTZ level of theory.

Figure S10. Numbering of molecular structures used in Table 3, 4, and 5.

A	tom	∆q (me⁻)	
С	1	0	
С	2	-10	
С	3	-20	
С	4	-10	
С	5	0	
Ν	6	40	
Н	7	-10	
Н	8	-10	
Н	9	0	
Н	10	0	
Н	11	-10	
С	12	0	
С	13	50	
С	14	0	
F	15	20	
F	16	10	
F	17	0	
F	18	10	
F	19	20	
F	20	10	
F	21	0	
I	22	-30	

Table S8. Changes in natural electron configuration for atoms in the HFP…Pyridine complex in millielectrons (me-).

Atom		Δq (me-)
С	1	-20
С	2	0
С	3	10
С	4	-30
Ν	5	40
Ν	6	-10
Н	7	0
Н	8	-10
Н	9	-10
Н	10	0
С	11	0
С	12	40
С	13	0
F	14	20
F	15	10
F	16	0
F	17	20
F	18	20
F	19	10
F	20	0
I	21	-40

Table S9. Changes in natural electron configuration for atoms in the HFP…Pyrimidine complex in millielectrons (me-).

Atom		Δq (me ⁻)
С	1	-10
С	2	10
С	3	-10
С	4	0
Ν	5	50
Ν	6	-10
Н	7	-10
Н	8	-10
Н	9	-10
Н	10	-10
С	11	0
С	12	50
С	13	0
F	14	20
F	15	10
F	16	0
F	17	10
F	18	20
F	19	10
F	20	0
I	21	-50

Table S10. Changes in natural electron configuration for atoms in the HFP---Pyridazine complex in millielectrons (me-).

1st C-I stretching motion 2nd C-I stretching motion 3rd C-I stretching motion Figure S11. Displacement vectors of the stretching motions within the HFP molecule.