Supporting Information

First principles investigation of anionic redox in bisulfate lithium battery cathodes

Pawan Kumar Jha,† Shashwat Singh,† Mayank Srivastava,^{\$} Prabeer Barpanda† and Gopalakrishnan Sai Gautam*‡

† Faraday Materials Laboratory (FaMaL), Materials Research Centre, Indian Institute of Science, Bangalore 560012, India

^{\$} Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India

‡ Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India

Corresponding Author

* E-mail: <u>saigautamg@iisc.ac.in</u>

Figure S1. Crystal framework of orthorhombic (o)- $\text{Li}_2M(\text{SO}_4)_2$ along *b* direction. Dark and light blue spheres represent Li1 and Li2 sites. Orange and cyan polyhedra indicate the SO₄ tetrahedra and MO₆ octahedra. Right panel represents the distorton in LiO₆ octahedra of Li1 sites.

Figure S2. Hybrid functional calculated projected density of states (pDOS) for monoclinic (m)-Li₂Ni(SO₄)₂ and LiNi(SO₄)₂ in left and right panel respectively. Purple, blue, and orange curves represent S p, O p, and Ni d states respectively. Dotted blue lines indicate the valence and conduction band edges, with the numbers indicating band gap values.

Figure S3. Projected density of state (pDOS) for monoclinic m-Li_xFe(SO₄)₂ at different states of (de)lithiation, namely x = 2, 1, and 0, as calculated by the Hubbard *U* corrected strongly constrained and appropriately normed (SCAN+*U*) functional. Cyan, blue, orange, and purple curves correspond to S *p*, O *p*, Fe *d*, and Li *s* states respectively. Dotted blue lines represent the valence and conduction band edges, while dashed black line indicates the Fermi level. Band gaps are indicated by the text notations at the corresponding conduction band minima.

Figure S4. SCAN+*U*-calculated pDOS for o- $Li_2M(SO_4)_2$, where M = Mn, Fe and Co in panels a, b, and c, respectively. Notations on each panel are identical to Figure S3.

Figure S5. SCAN+*U*-calculated pDOS of $o-Li_xNi(SO_4)_2$ for x = 2 (panel a) and 1 (panel b). Notations on each panel are identical Figure S3.

Figure S6. Hubbard *U* corrected generalized gradient approximation (GGA+*U*)-calculated pDOS of (a) m-Li_xMn(SO₄)₂ and (b) m-Li_xFe(SO₄)₂. Top, middle, and bottom panels represent different levels of (de)lithiation, namely, x = 2, 1, and 0, respectively. Notations on each panel are identical to **Figure S3.**

Figure S7. GGA+*U*-calculated pDOS of (a) m-Li_xCo(SO₄)₂ and (b) m-Li_xNi(SO₄)₂. Top, middle, and bottom panels represent different levels of (de)lithiation, namely, x = 2, 1, and 0, respectively. Notations on each panel are identical to **Figure S3**.

Figure S8. GGA+*U*-calculated pDOS of (a) $o-Li_xNi(SO_4)_2$ and (b) $o-Li_2M(SO_4)_2$, where M = Mn (top panel), Fe (middle), and Co (bottom). In (a), the top, middle, and bottom panels represent different levels of (de)lithiation, namely, x = 2, 1, and 0, respectively. Notations on each panel are identical to **Figure S3.**

Figure S9. Electron density difference for Li-removal in (a) $Li_2Mn(SO_4)_2$, (b) $LiMn(SO_4)_2$, (c) $Li_2Fe(SO_4)_2$, (d) $LiFe(SO_4)_2$, (e) $Li_2Co(SO_4)_2$, and (f) $LiCo(SO_4)_2$. Red, blue, orange, purple, green, dark blue, and pink spheres represent O, Li, S, Mn, Fe, Co, and Li-vacancy, respectively. Isosurfaces are at 0.008 (Mn), 0.02 (Fe), and 0.015 e⁻/bohr³ (Co).

Figure S10. SCAN+*U* calculated energy, relative to the ground state configuration (in eV/f.u.), as a function of applied hydrostatic strain (panels a and c) and applied shear strain (b and d) in m-Li₂Ni(SO₄)₂ (a and b) and LiNi(SO₄)₂ (c and d). Applied strain in both panels are given in %, relative to the ground state configuration. Black squares, red circles, and blue triangles in the right panel indicate shear strains applied along the *c*, *b*, and *a*-axis of the monoclinic unit cell.

System		a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	V(Å ³)
Li ₂ Mn(SO ₄) ₂	GGA+U	9.51971	9.39573	14.03362	90.00	90.00	90.00	1255.23138
	SCAN+U	9.34368	9.24819	13.73874	90.00	90.00	90.00	1187.19290
	GGA+U	9.38245	9.31127	13.86869	89.9999	90.0002	89.9999	1211.60352
Li ₂ Fe(SO ₄) ₂	SCAN+U	9.18221	9.17010	13.61174	90.0001	90.0003	90.00	1146.13246
	Expt.	9.27980	9.20890	13.67650	90.00	90.00	90.00	1168.74938
	GGA+U	9.31610	9.20287	13.82582	90.00	90.00	90.00	118535436
Li ₂ Co(SO ₄) ₂	SCAN+U	9.16169	9.04557	13.57579	89.9996	90.00	89.998	1125.06175
	Expt.	9.20688	9.10175	13.71190	90.00	90.00	90.00	1149.03965
	GGA+U	9.24625	9.13135	13.70520	90.00	90.00	90.00	1157.13982
Li ₂ Ni(SO ₄) ₂	SCAN+U	9.09432	8.97466	13.45300	90.0001	90.00	90.00	1098.01195
	Expt.	9.12600	9.00100	13.54300	90.00	90.00	90.00	1112.46447

Table S1. Optimized lattice parameters of $o-Li_2Ni(SO_4)_2$ (M=Mn, Fe, Co, and Ni) estimated using SCAN+*U* and GGA+*U* approximations, compared with experimental values.

Table S2. Calculated and experimental average bond length, Baur's distortion index and bondangle variance of SO4 and MO6 polyhedra of m-Li2M(SO4)2 (M=Mn, Fe, Co, and Ni).

System		Bond-type	Average Bond	Distortion	Bond angle
			Length (Å)	Index	variance (° ²)
	$CCA \mid U$	Mn-O	2.2124	0.02098	40.3915
Li ₂ Mn(SO ₄) ₂	UUA+U	S-O	1.4898	0.00408	3.2049
	SCANLU	Mn-O	2.1750	0.01686	40.4581
	SCAN+U	S-O	1.4713	0.00420	3.1805
	Event	Mn-O	2.2029	0.01588	42.2134
	Expt.	S-O	1.4566	0.00543	4.3430
	CCA+U	Fe-O	2.1625	0.01649	32.8736
	UUA+U	S-O	1.4902	0.00525	4.2667
Li2Fe(SO4)2	SCAN+U	Fe-O	2.1290	0.01342	31.8448
		S-O	1.4717	0.00529	3.9191
		Fe-O	2.1036	0.01179	39.7825
	Expt.	S-O	1.4899	0.04329	28.2719
Li2C0(SO4)2	CCA+U	Co-O	2.1351	0.01336	33.2996
	UUATU	S-O	1.4898	0.00624	4.0917
	SCAN+U	Co-O	2.1036	0.01024	33.5848
		S-O	1.4710	0.00612	3.6361
		Co-O	2.1100	0.00811	35.1295
	Expt.	S-O	1.4773	0.00776	3.1783
Li2Ni(SO4)2	CCA + U	Ni-O	2.1099	0.01630	29.5633
	UUA+U	S-O	1.4886	0.00659	4.2634
	SCANLU	Ni-O	2.0738	0.01266	27.5136
	SCAN+U	S-O	1.4707	0.00686	3.7888
	Event	Ni-O	2.1776	0.02216	28.0094
	Expt.	S-O	1.4814	0.01109	46.9046

System		Bond-type	Average Bond	Distortion	Bond angle
-			Length (Å)	Index	variance (° ²)
	$CCA \mid U$	Mn-O	2.2010	0.02046	20.2946
	00A+U	S-O	1.4914	0.00369	11.2927
Li ₂ Mn(SO ₄) ₂	SCANLU	Mn-O	2.1596	0.01774	20.7383
- (SCAN+U	S-O	1.4742	0.00457	11.0910
	$CCA \mid U$	Fe-O	2.1511	0.01364	20.2515
	GGA+U	S-O	1.4912	0.00294	11.5389
Li ₂ Fe(SO ₄) ₂	SCANLU	Fe-O	2.1120	0.00973	23.3890
~ /	SCAN+U	S-O	1.4746	0.00502	12.7614
	Event	Fe-O	2.1323	0.01657	24.4085
	Expt.	S-O	1.4929	0.00083	17.2093
Li2Co(SO4)2	CCA+U	Co-O	2.1213	0.01813	18.03303
	UUA I U	S-O	1.4932	0.00592	23.0551
	SCAN+U	Co-O	2.0858	0.01697	18.4334
		S-O	1.4722	0.00226	12.2298
	Event	Co-O	2.0861	0.01286	17.1494
	Expt.	S-O	1.4831	0.01379	12.1005
	CCA+U	Ni-O	2.0922	0.01518	15.3757
	UUA+U	S-O	1.4927	0.00613	15.3757
Li2Ni(SO4)2	SCANLU	Ni-O	2.0534	0.01051	15.8152
	SCAN+U	S-O	1.4745	0.00624	14.2162
	Evnt	Ni-O	2.0584	0.01314	15.6537
	Expi.	S-O	1.4736	0.00563	13.0296

Table S3. Calculated and experimental average bond length, Baur's distortion index and bond angle variance of SO₄ and MO₆ polyhedra of o-Li₂M(SO₄)₂ (M=Mn, Fe, Co, and Ni).

Table S4. SCAN+U predicted on-site, averaged, magnetic moments of transition elements and corresponding electronic configurations.

System	Magnetic Moment	Corresponding Electronic configuration
Li ₂ Mn(SO ₄) ₂	4.657	$t_{2g}^{3}e_{g}^{2}$
LiMn(SO ₄) ₂	3.889	$t_{2g}^{3}e_{g}^{1}$
Mn(SO ₄) ₂	3.033	$t_{2g}^{3}e_{g}^{0}$
Li ₂ Fe(SO ₄) ₂	3.745	$t_{2g}^4 e_g^2$
LiFe(SO ₄) ₂	4.361	$t_{2g}^{3}e_{g}^{2}$
Fe(SO ₄)2	4.301	$t_{2g}^{3}e_{g}^{2}$
Li ₂ Co(SO ₄) ₂	2.802	$t_{2g}^{5}e_{g}^{2}$
LiCo(SO ₄) ₂	3.224	$t_{2g}^4 e_g^2$
Co(SO 4)2	3.236	$t_{2g}^4 e_g^2$
Li ₂ Ni(SO ₄) ₂	1.785	$t_{2g}^{6}e_{g}^{2}$
LiNi(SO ₄) ₂	1.857	$t_{2g}^{6}e_{g}^{2}$
Ni(SO ₄) ₂	1.831	$t_{2g}^{6}e_{g}^{2}$

	Li ₂ Ni(SO ₄) ₂	LiNi(SO ₄) ₂	Ni(SO ₄) ₂
01	-0.001	0.053	0.520
02	-0.001	0.324	0.519
03	-0.001	0.053	0.520
04	-0.001	0.323	0.519
05	0.030	0.051	0.073
06	0.029	0.078	0.075
07	0.029	0.051	0.073
08	0.030	0.078	0.074
09	0.026	0.038	0.060
O10	0.025	0.061	0.059
011	0.025	0.038	0.060
012	0.026	0.061	0.060
013	0.029	0.064	0.314
014	0.029	0.349	0.314
015	0.029	0.063	0.314
016	0.029	0.349	0.314

Table S5. SCAN+U predicted change in on-site magnetic moment of individual oxygen ions at various (de)lithiation states of Li_xNi(SO₄)₂.

Table S6. SCAN+U predicted change in on-site magnetic moment of individual oxygen ions at various (de)lithiation states of Li_xMn(SO₄)₂.

	Li ₂ Mn(SO ₄) ₂	LiMn(SO ₄) ₂	Mn(SO ₄) ₂
01	0	0.001	0.009
02	0	0.001	0.008
03	0	0.001	0.009
04	0	0.001	0.008
05	0.018	0.011	-0.023
06	0.018	0.015	-0.025
07	0.018	0.011	-0.023
08	0.018	0.015	-0.024
09	0.017	-0.003	-0.015
O10	0.017	-0.005	-0.016
011	0.017	-0.003	-0.015
012	0.017	-0.005	-0.016
013	0.017	-0.021	-0.024
014	0.017	-0.035	-0.026
015	0.017	-0.021	-0.024
016	0.017	-0.034	-0.025

	Li ₂ Co(SO ₄) ₂	LiCo(SO ₄) ₂	Co(SO ₄) ₂
01	0	0.009	0.276
02	0	0.020	0.22
03	0	0.009	0.22
O4	0	0.020	0.276
05	0.025	0.081	0.154
06	0.025	0.102	0.176
07	0.025	0.081	0.176
08	0.025	0.102	0.154
09	0.020	0.068	0.185
O10	0.019	0.11	0.176
011	0.019	0.068	0.176
012	0.020	0.11	0.185
013	0.023	0.099	0.192
014	0.023	0.184	0.199
015	0.023	0.099	0.199
016	0.023	0.184	0.192

Table S7. SCAN+U predicted change in on-site magnetic moment of individual oxygen ions at various (de)lithiation states of Li_xCo(SO₄)₂.

Table S8. SCAN+U predicted change in on-site magnetic moment of individual oxygen ions at various (de)lithiation states of Li_xFe(SO₄)₂.

	Li ₂ Fe(SO ₄) ₂	LiFe(SO ₄) ₂	Fe(SO ₄) ₂
01	0	0.006	-0.180
02	0	0.006	-0.185
03	0	0.006	-0.180
04	0	0.007	-0.184
05	0.021	0.086	0.006
06	0.021	0.085	0.003
07	0.021	0.085	0.006
08	0.021	0.086	0.002
09	0.020	0.078	0.003
O10	0.020	0.078	-0.004
011	0.020	0.078	0.003
012	0.020	0.079	-0.004
013	0.024	0.075	-0.005
014	0.024	0.081	-0.003
015	0.024	0.076	-0.005
016	0.024	0.081	-0.003

Table S9. (a) Mulliken and (b) Löwdin charge populations at various (de)lithiation states of $m-Li_xNi(SO_4)_2$, calculated using LOBSTER package, based on SCAN+*U*-computed charge densities.

(a)

Element	Li ₂ Ni(SO ₄) ₂	LiNi(SO ₄) ₂	Ni(SO ₄) ₂
Nil	1.51	1.58	1.60
Ni2	1.51	1.58	1.60
01	-1.14	-1.06	-0.67
O2	-1.14	-0.87	-0.67
O3	-1.14	-1.06	-0.67
O4	-1.14	-0.87	-0.67
05	-1.08	-1.07	-1.03
O6	-1.08	-1.02	-1.03
07	-1.08	-1.07	-1.03
08	-1.08	-1.02	-1.03
O9	-1.11	-1.11	-1.06
O10	-1.11	-1.05	-1.06
011	-1.11	-1.11	-1.06
012	-1.11	-1.05	-1.06
O13	-1.10	-1.09	-0.91
014	-1.10	-0.86	-0.90
015	-1.10	-1.09	-0.91
016	-1.10	-0.86	-0.90

(b)

Element	Li ₂ Ni(SO ₄) ₂	LiNi(SO ₄) ₂	Ni(SO ₄) ₂
Ni1	1.39	1.44	1.42
Ni2	1.39	1.44	1.42
01	-1.03	-0.97	-0.62
O2	-1.03	-0.78	-0.62
O3	-1.03	-0.97	-0.62
O4	-1.03	-0.78	-0.62
05	-1.00	-0.99	-0.94
O6	-1.00	-0.93	-0.95
07	-1.00	-0.99	-0.94
08	-1.00	-0.93	-0.95
O9	-1.02	-1.02	-0.97
O10	-1.02	-0.96	-0.97
011	-1.02	-1.02	-0.97
O12	-1.02	-0.96	-0.97
O13	-1.01	-1.00	-0.83
O14	-1.01	-0.78	-0.83
015	-1.01	-1.00	-0.83
O16	-1.01	-0.78	-0.83

Element	Li ₂ Mn(SO ₄) ₂	LiMn(SO ₄) ₂	Mn(SO ₄) ₂
Mn1	1.61	1.92	2.05
Mn2	1.61	1.92	2.05
01	-1.14	-1.07	-0.97
O2	-1.14	-1.07	-0.97
O3	-1.14	-1.07	-0.97
O4	-1.14	-1.07	-0.97
O5	-1.10	-1.06	-0.95
O6	-1.10	-1.05	-0.94
O7	-1.10	-1.06	-0.95
08	-1.10	-1.05	-0.94
O9	-1.11	-1.08	-0.96
O10	-1.11	-1.03	-0.97
011	-1.11	-1.08	-0.96
O12	-1.11	-1.03	-0.97
O13	-1.10	-1.05	-0.94
014	-1.10	-0.99	-0.94
015	-1.10	-0.105	-0.94
O16	-1.10	-0.99	-0.94

Table S10. Mulliken charge population at various (de)lithiation states of $m-Li_xMn(SO_4)_2$ calculated using LOBSTER package, based on SCAN+*U*-computed charge densities.

Table S11. Mulliken charge population at various (de)lithiation states states of $m-Li_xFe(SO_4)_2$ calculated using LOBSTER package, based on SCAN+U-computed charge densities.

Element	Li ₂ Fe(SO ₄) ₂	LiFe(SO ₄) ₂	Fe(SO ₄) ₂
Fe1	1.58	2.09	2.14
Fe2	1.58	2.09	2.14
01	-1.14	-1.08	-0.89
O2	-1.14	-1.08	-0.88
O3	-1.14	-1.08	-0.89
O4	-1.14	-1.08	-0.88
05	-1.09	-1.06	-1.01
O6	-1.09	-1.06	-1.01
07	-1.09	-1.06	-1.01
08	-1.09	-1.06	-1.01
09	-1.11	-1.08	-1.02
O10	-1.11	-1.07	-1.02
011	-1.11	-1.08	-1.02
O12	-1.11	-1.07	-1.02
O13	-1.11	-1.07	-1.01
014	-1.11	-1.08	-1.01
015	-1.11	-1.07	-1.01
O16	-1.11	-1.08	-1.01

Element	Li ₂ Co(SO ₄) ₂	LiCo(SO ₄) ₂	$Co(SO_4)_2$
Co1	1.57	1.90	1.97
Co2	1.57	1.90	1.97
01	-1.14	-1.07	-0.76
O2	-1.14	-1.07	-0.80
O3	-1.14	-1.07	-0.80
O4	-1.14	-1.07	-0.76
05	-1.09	-1.02	-0.92
O6	-1.09	-1.02	-0.91
07	-1.09	-1.02	-0.91
08	-1.09	-1.02	-0.92
09	-1.11	-1.05	-0.92
O10	-1.11	-1.05	-0.93
011	-1.11	-1.05	-0.93
O12	-1.11	-1.05	-0.92
O13	-1.11	-1.05	-0.90
O14	-1.11	-1.05	-0.90
015	-1.11	-1.05	-0.90
016	-1.11	-1.05	-0.90

Table S12. Mulliken charge population at various (de)lithiation states of $m-Li_2Co(SO_4)_2$ calculated using LOBSTER package, based on SCAN+U-computed charge densities.

Table S13. SCAN+*U*-calculated S-O and M-O bond lengths at various (de)lithiation states for $m-Li_xM(SO_4)_2$ (M = Ni, Mn, Fe and Co).

Li ₂ Ni(SO ₄) ₂	LiNi(SO ₄) ₂	Ni(SO ₄) ₂
(Ni1-O6) = 2.12365 Å	(Ni1-O6) = 2.11576 Å	(Ni1-O6) = 2.03590 Å
(Ni1-O11) = 2.03924 Å	(Ni1-O11) = 2.05477 Å	(Ni1-O11) = 2.03518 Å
(Ni1-O16) = 2.06790 Å	(Ni1-O16) = 1.99274 Å	(Ni1-O16) = 2.02626 Å
(Ni1-O15) = 2.07702 Å	(Ni1-O15) = 2.04683 Å	(Ni1-O15) = 2.03603 Å
(Ni1-O12) = 2.03538 Å	(Ni1-O12) = 2.03403 Å	(Ni1-O12) = 2.03341 Å
(Ni1-O5) = 2.09935 Å	(Ni1-O5) = 2.04563 Å	(Ni1-O5) = 2.03062 Å
(Ni2-O13) = 2.06790 Å	(Ni2-O13) = 2.04667 Å	(Ni2-O13) = 2.03546 Å
(Ni2-O7) = 2.12364 Å	(Ni2-O7) = 2.04545 Å	(Ni2-O7) = 2.03094 Å
(Ni2-O10) = 2.03922 Å	(Ni2-O10) = 2.03440 Å	(Ni2-O10) = 2.03375 Å
(Ni2-O9) = 2.03538 Å	(Ni2-O9) = 2.05459 Å	(Ni2-O9) = 2.03502 Å
(Ni2-O8) = 2.09936 Å	(Ni2-O8) = 2.11490 Å	(Ni2-O8) = 2.03557 Å
(Ni2-O14) = 2.07705 Å	(Ni2-O14) = 1.99412 Å	(Ni2-O14) = 2.02644 Å

Li ₂ Ni(SO ₄) ₂	LiNi(SO ₄) ₂	Ni(SO ₄) ₂
(S1-O5) = 1.48130(0) Å	(S1-O5) = 1.48377 Å	(S1-O5) = 1.44933 Å
(S1-O1) = 1.44990(0) Å	(S1-O1) = 1.43421 Å	(S1-O1) = 1.49229 Å
(S1-O9) = 1.47531(0) Å	(S1-O9) = 1.48185 Å	(S1-O9) = 1.44386 Å
(S1-O13) = 1.47506(0) Å	(S1-O13)= 1.48163 Å	(S1-O13) = 1.48141 Å
(S2-O14) = 1.47518(0) Å	(S2-O14) = 1.50160 Å	(S2-O14)= 1.48176 Å
(S2-O10) = 1.47631(0) Å	(S2-O10) = 1.44639 Å	(S2-O10) = 1.44401 Å
(S2-O2) = 1.45054(0) Å	(S2-O2) = 1.47039 Å	(S2-O2) = 1.49205 Å
(S2-O6) = 1.48086(0) Å	(S2-O6) = 1.45015 Å	(S2-O6) = 1.44891 Å
(S3-O15) = 1.4/518(0) A	(S3-O15) = 1.48162 A	(S3-O15) = 1.48140 A
(S3-O7) = 1.48086(0) A	(S3-O7) = 1.48372 Å	(S3-O7) = 1.44932 Å
(S3-O11) = 1.47630(0) Å	(S3-O11) = 1.48187 Å	(S3-O11)= 1.44394 Å
(S3-O3) = 1.45054(0) Å	(S3-O3) = 1.43413 Å	(S3-O3) = 1.49232 Å
(S4-O4) = 1.44992(0) Å	(S4-O4) = 1.47011 Å	(S4-O4) = 1.49202 Å
(S4-O12) = 1.47530(0) Å	(S4-O12) = 1.44643 Å	(S4-O12) = 1.44413 Å
(S4-O8) = 1.48129(0) Å	(S4-O8) = 1.45027 Å	(S4-O8) = 1.44879 Å
(S4-O16) = 1.47503(0) Å	(S4-O16) = 1.50196 Å	(S4-O16) = 1.48170 Å

Li ₂ Mn(SO ₄) ₂	LiMn(SO ₄) ₂	Mn(SO ₄) ₂
(Mn1-O6) = 2.18736 Å	(Mn1-O6) = 2.17687 Å	(Mn1-O6) = 1.91301 Å
(Mn1-O11) = 2.12220 Å	(Mn1-O11) = 1.97186 Å	(Mn1-O11) = 1.90916 Å
(Mn1-O16) = 2.22025 Å	(Mn1-O16) = 1.90674 Å	(Mn1-O16) = 1.90003 Å
(Mn1-O15) = 2.22014 Å	(Mn1-O15) = 1.98723 Å	(Mn1-O15) = 1.90020 Å
(Mn1-O12) = 2.12210 Å	(Mn1-O12) = 1.92036 Å	(Mn1-O12) = 1.91823 Å
(Mn1-O5) = 2.18763 Å	(Mn1-O5) = 2.30486 Å	(Mn1-O5) = 1.91517 Å
(Mn2-O13) = 2.22025 Å	(Mn2-O13) = 1.98704 Å	(Mn2-O13) = 1.89995 Å
(Mn2-O7) = 2.18736 Å	(Mn2-O7) = 2.30458 Å	(Mn2-O7) = 1.91544 Å
(Mn2-O10) = 2.12220 Å	(Mn2-O10) = 1.92135 Å	(Mn2-O10) = 1.91799 Å
(Mn2-O9) = 2.12210 Å	(Mn2-O9) = 1.97243 Å	(Mn2-O9) = 1.90963 Å
(Mn2-O8) = 2.18765 Å	(Mn2-O8) = 2.17668 Å	(Mn2-O8) = 1.91274 Å
(Mn2-O14) = 2.22014 Å	(Mn2-O14) = 1.90618 Å	(Mn2-O14) = 1.90043 Å

Li ₂ Mn(SO ₄) ₂	LiMn(SO ₄) ₂	Mn(SO ₄) ₂
(S1-O5) = 1.48012 Å	(S1-O5) = 1.46125 Å	(S1-O5) = 1.49804 Å
(S1-O1) = 1.45904 Å	(S1-O1) = 1.41929 Å	(S1-O1) = 1.40121 Å
(S1-O9) = 1.47288 Å	(S1-O9) = 1.50712 Å	(S1-O9) = 1.50762 Å
(S1-O13) = 1.47374 Å	(S1-O13) = 1.50285 Å	(S1-O13) = 1.50113 Å
(S2-O14) = 1.47375 Å	(S2-O14) = 1.50770 Å	(S2-O14) = 1.50201 Å
(S2-O10) = 1.47285 Å	(S2-O10) = 1.49699 Å	(S2-O10) = 1.50613 Å
(S2-O2) = 1.45904 Å	(S2-O2) = 1.43209 Å	(S2-O2) = 1.40126 Å
(S2-O6) = 1.48013 Å	(S2-O6) = 1.45237 Å	(S2-O6) = 1.49914 Å
(S3-O15) = 1.47376 Å	(S3-O15) = 1.50279 Å	(S3-O15) = 1.50137 Å
(S3-O7) = 1.48015 Å	(S3-O7) = 1.46124 Å	(S3-O7) = 1.49814 Å
(S3-O11) = 1.47287 Å	(S3-O3) = 1.41928 Å	(S3-O11) = 1.50798 Å
(S3-O3) = 1.45897 Å	(S3-O11) = 1.50721 Å	(S3-O3) = 1.40121 Å
(S4-O4) = 1.45899 Å	(S4-O4) = 1.43213 Å	(S4-O4) = 1.40130 Å
(S4-O12) = 1.47290 Å	(S4-O12) = 1.49714 Å	(S4-O12) = 1.50599 Å
(S4-O8) = 1.48013 Å	(S4-O8) = 1.45236 Å	(S4-O8) = 1.49912 Å
(S4-O16) = 1.47375 Å	(S4-O16) = 1.50749 Å	(S4-O16) = 1.50203 Å

Li ₂ Fe(SO ₄) ₂	LiFe(SO ₄) ₂	Fe(SO ₄) ₂
(Fe1-O6) = 2.17040 Å	(Fe1-O6) = 1.99780 Å	(Fe1-O6) = 1.98399 Å
(Fe1-O11) = 2.10094 Å	l(Fe1-O11) = 2.03597 Å	(Fe1-O11) = 1.98263 Å
(Fe1-O16) = 2.11517 Å	l(Fe1-O16) = 2.02310 Å	(Fe1-O16) = 1.98201 Å
(Fe1-O15) = 2.11858 Å	l(Fe1-O15) = 2.04369 Å	(Fe1-O15) = 1.98580 Å
(Fe1-O12) = 2.09559 Å	l(Fe1-O12) = 2.03401 Å	(Fe1-O12) = 1.99253 Å
(Fe1-O5) = 2.17334 Å	l(Fe1-O5) = 1.98894 Å	(Fe1-O5) = 1.97956 Å
(Fe2-O13) = 2.11517 Å	(Fe2-O13) = 2.04524 Å	(Fe2-O13) = 1.98595 Å
(Fe2-O7) = 2.17054 Å	(Fe2-O7) = 1.99311 Å	(Fe2-O7) = 1.97946 Å
(Fe2-O10) = 2.10104 Å	(Fe2-O10) = 2.03242 Å	(Fe2-O10) = 1.99247 Å
(Fe2-O9) = 2.09559 Å	(Fe2-O9) = 2.03567 Å	(Fe2-O9) = 1.98282 Å
(Fe2-O8) = 2.17354 Å	(Fe2-O8) = 1.99551 Å	(Fe2-O8) = 1.98407 Å
(Fe2-O14) = 2.11824 Å	(Fe2-O14) = 2.02075 Å	(Fe2-O14) = 1.98197 Å

Li ₂ Fe(SO ₄) ₂	LiFe(SO ₄) ₂	Fe(SO ₄) ₂
(S1-O5) = 1.47663 Å	(S1-O5) = 1.47288 Å	l(S1-O5) = 1.47878 Å
(S1-O1) = 1.45590 Å	(S1-O9) = 1.49002 Å	l(S1-O9) = 1.48012 Å
(S1-O9) = 1.47299 Å	(S1-O1) = 1.42655 Å	l(S1-O1) = 1.43542 Å
(S1-O13) = 1.48077 Å	(S1-O13) = 1.49631 Å	l(S1-O13) = 1.47920 Å
(S2-O14) = 1.48077 Å	(S2-O14) = 1.49091 Å	(S2-O14) = 1.48023 Å
(S2-O10) = 1.47266 Å	(S2-O2) = 1.42697 Å	(S2-O2) = 1.43606 Å
(S2-O2) = 1.45608 Å	(S2-O10) = 1.49730 Å	(S2-O10) = 1.47905 Å
(S2-O6) = 1.47713 Å	(S2-O6) = 1.47106 Å	(S2-O6) = 1.47835 Å
(S3-O15) = 1.48071 Å	(S3-O15) = 1.49504 Å	(S3-O15) = 1.47921 Å
(S3-O7) = 1.47711 Å	(S3-O7) = 1.47206 Å	(S3-O7) = 1.47865 Å
(S3-O11) = 1.47266 Å	(S3-O11) = 1.49226 Å	(S3-O11) = 1.48008 Å
(S3-O3) = 1.45613 Å	(S3-O3) = 1.42691 Å	(S3-O3) = 1.43557 Å
(S4-O4) = 1.45597 Å	(S4-O4) = 1.42707 Å	(S4-O4) = 1.43588 Å
(S4-O12) = 1.47296 Å	(S4-O12) = 1.49524 Å	(S4-O12) = 1.47889 Å
(S4-O8) = 1.47658 Å	(S4-O8) = 1.47191 Å	(S4-O8) = 1.47850 Å
(S4-O16) = 1.48077 Å	(S4-O16) = 1.49293 Å	(S4-O16) = 1.48026 Å

$Li_2Co(SO_4)_2$	LiCo(SO ₄) ₂	$Co(SO_4)_2$
(Co1-O6) = 2.12335 Å	(Co1-O6) = 2.05906 Å	(Co1-O6) = 2.00399 Å
(Co1-O11) = 2.07338 Å	(Co1-O11) = 2.06748 Å	(Co1-O11) = 1.99577 Å
(Co1-O16) = 2.11503 Å	(Co1-O16) = 1.87982 Å	(Co1-O16) = 1.92431 Å
(Co1-O15) = 2.11641 Å	(Co1-O15) = 1.99580 Å	(Co1-O15) = 1.90834 Å
(Co1-O12) = 2.06921 Å	(Co1-O12) = 1.95123 Å	(Co1-O12) = 2.00657 Å
(Co1-O5) = 2.12421 Å	(Co1-O5) = 2.08089 Å	(Co1-O5) = 2.00595 Å
(Co2-O13) = 2.11504 Å	(Co2-O13) = 1.99526 Å	(Co2-O13) = 1.92429 Å
(Co2-O7) = 2.12335 Å	(Co2-O7) = 2.08059 Å	(Co2-O7) = 2.00396 Å
(Co2-O10) = 2.07339 Å	(Co2-O10) = 1.95141 Å	(Co2-O10) = 1.99584 Å
(Co2-O9) = 2.06921 Å	(Co2-O9) = 2.06788 Å	(Co2-O9) = 2.00661 Å
(Co2-O8) = 2.12420 Å	(Co2-O8) = 2.05876 Å	(Co2-O8) = 2.00599 Å
(Co2-O14) = 2.11642 Å	(Co2-O14) = 1.87980 Å	(Co2-O14) = 1.90832 Å

Li ₂ Co(SO ₄) ₂	LiCo(SO ₄) ₂	Co(SO ₄) ₂
(S1-O5) = 1.48201 Å	(S1-O5) = 1.47676(0) Å	(S1-O5) = 1.46576 Å
(S1-O1) = 1.45300 Å	(S1-O1) = 1.41797(0) Å	(S1-O9) = 1.47448 Å
(S1-O9) = 1.47362 Å	(S1-O9) = 1.49453(0) Å	(S1-O1) = 1.44833 Å
(S1-O13) = 1.47535 Å	(S1-O13) = 1.49647(0) Å	(S1-O13) = 1.48578 Å
(S2-O14) = 1.47538 Å	(S2-O14) = 1.50678(0) Å	(S2-O14) = 1.49110 Å
(S2-O10) = 1.47350 Å	(S2-O2) = 1.43067(0) Å	(S2-O2) = 1.43831 Å
(S2-O2) = 1.45310 Å	(S2-O6) = 1.46841(0) Å	(S2-O10) = 1.47569 Å
(S2-O6) = 1.48221 Å	(S2-O10) = 1.47793(0) Å	(S2-O6) = 1.47211 Å
(S3-O15) = 1.47538 Å	(S3-O15) = 1.49652(0) Å	(S3-O15) = 1.49121 Å
(S3-O7) = 1.48221 Å	(S3-O7) = 1.47681(0) Å	(S3-O7) = 1.47211 Å
(S3-O11) = 1.47350 Å	(S3-O11) = 1.49461(0) Å	(S3-O11) = 1.47585 Å
(S3-O3) = 1.45310 Å	(S3-O3) = 1.41794(0) Å	(S3-O3) = 1.43838 Å
(S4-O4) = 1.45301 Å	(S4-O4) = 1.43063(0) Å	(S4-O4) = 1.44849 Å
(S4-O12) = 1.47361 Å	(S4-O12) = 1.47802(0) Å	(S4-O12) = 1.47458 Å
(S4-O8) = 1.48202 Å	(S4-O8) = 1.46844(0) Å	(S4-O8) = 1.46577 Å
(S4-O16) = 1.47535 Å	(S4-O16) = 1.50675(0) Å	(S4-O16) = 1.48560 Å