Excited state dynamics of protonated dopamine: Hydration and conformation effects

Keisuke Hirata,^{1, 2, 3} Ken-ichi Kasai,^{1, 4} Koki Yoshizawa,^{1, 4} Gilles Grégoire,^{3, 5}* Shun-ichi Ishiuchi^{1, 2, 3}* and Masaaki Fujii^{1, 3, 4}*

¹ Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsu-ta-cho, Midori-ku, Yokohama, 226-8503, Japan

² Department of Chemistry, School of Science, Tokyo Institute of Technology. 2-12-1 4259 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan

³ Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan

⁴ School of Life Science and Technology, Tokyo Institute of Technology. 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan

⁵ Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, F-91405 Orsay, France

Supplementary Material

Conf.	$\Delta m{G}_{180 ext{K}}$ / kJmol $^{-1}$
G1-1	0
G1-2	2.8
G1-3	7.8
G2-1	9.8
G1-4	11.2
G1-5	15.0
G1-6	17.7
G2-2	19.7
G1-7	20.1
G1-8	21.2

Table S1 Gibbs free energy (180 K) of the ten lowest energy conformers of $DAH^+(H_2O)_3$.

Table S2 Gibbs free energy (180 K) of the six lowest energy conformers of DAH⁺(H₂O).

Conf.	$\Delta \boldsymbol{G}_{180\mathrm{K}}$ / kJmol ⁻¹
G1-1	0
G1-2	0.4
G2-1	0.5
G2-2	1.5
G2-3	1.5
G1-3	2.1

Conf.	$\Delta \boldsymbol{G}_{180 ext{K}}$ / kJmol ⁻¹
G1-1	0
G1-2	2.0
G2-1	2.9
G1-3	3.2
G2-2	4.3
G2-3	4.8
G1-4	5.5
G2-4	7.1
G1-5	7.5
G1-6	8.5

Table S3 Gibbs free energy (180 K) of the ten lowest energy conformers of $DAH^+(H_2O)_2$.

Fig. S1 UV photodissociation mass spectra of $DAH^+(H_2O)_n$ (n = 0 - 3). Blue and red lines correspond to the spectra with UV laser on and off, respectively. The peaks marked by asterisk show fragments caused by collision-induced dissociation. Numbers in parentheses show excitation wavenumber.

Fig. S2 Comparison between the IRPD spectra of $DAH^+(H_2O)_3$ and $DAH^+(D_2O)_3$. The blue shaded area enlightens the frequencies associated with water that disappear in the heavy water spectrum. The H/D scrambling in the linear ion trap is negligible due to the low temperature (180 K).¹

Fig. S3 Structures of the ten lowest energy conformers of $DAH^+(H_2O)_3$. G1 and G2 correspond to the syn and anti rotamer of DAH^+ , respectively.

Fig. S4 Calculated IR spectra of the ten lowest energy conformers of $DAH^+(H_2O)_3$. Numbers in parentheses indicate Gibbs free energy at 180 K.

Fig. S5 Comparison between the IRPD spectra of $DAH^+(H_2O)$ and $DAH^+(D_2O)$. The blue shaded area enlightens the frequencies associated with water that disappear in the heavy water spectrum.

Fig. S6 Structures of the six lowest energy conformers of DAH⁺(H₂O).

Fig. S7 Calculated IR spectra of the six lowest energy conformers of $DAH^+(H_2O)$. Numbers in parentheses indicate Gibbs free energy at 180 K.

Fig. S8 Calculated Franck-Condon factors of the two conformers (a) G1-1 and (b) G1-2 of DAH⁺-(H₂O).

Fig. S9 Comparison between the IR spectra of $DAH^+(H_2O)_2$ and $DAH^+(D_2O)_2$. The blue shaded area enlightens the frequencies associated with water that disappear in the heavy water spectrum.

Fig. S11 Calculated IR spectra of the ten lowest energy conformers of $DAH^+(H_2O)_2$. Numbers in parentheses indicate Gibbs free energy at 180 K.

Fig. S12 Minimum Energy Path (MEP) for the G1-1 DAH⁺- $(H_2O)_3$ conformer along the N-H stretch not involved in H-bond (free N-H).

Reference

1. J. M. Voss, K. C. Fischer and E. Garand, J. Phys. Chem. Lett., 2018, 9, 2246-2250.