

Fig. S1 Illustration of fabrication process. Schematic images of the fabrication process of the T-shape overhang microcolumns featured with two parts of re-entrant curvatures for better stabilization of Cassie state, including the SiO_2 cap segment and the re-entrant Si pillar segment.

Fig. S2 SEM images of overhang columns with different shapes and areas fractions. (a) Square columns with f = 69.4%, $l = 50 \ \mu\text{m}$ and $d = 10 \ \mu\text{m}$ and circular columns with various area fraction of (b) 53.6%, (c) 10.5% and (d) 1.2%. The insets are the corresponding cross-sectional SEM images.

Fig. S3 The microscope image of the water droplets after disturbance on a designed bi-parallelchannel re-entrant surface with different channel width (110 μ m and 27.5 μ m). The liquid surface with larger intervals (110 μ m) collapsed and turned into fully wetted Wenzel state, while the sections with smaller intervals (27.5 μ m) providing a larger upward Laplace force still maintain air bubbles trapped in the channels.

Fig. S4 Effects of channel intervals and area fractions on contact angles and roll-off angles. SEM images of overhang square columns with $l = 10 \ \mu\text{m}$ and various area fractions of (a) 25% ($d = 10 \ \mu\text{m}$), (b) 11.1% ($d = 30 \ \mu\text{m}$), (c) 4.9% ($d = 45 \ \mu\text{m}$) and (d) 1.2% ($d = 80 \ \mu\text{m}$). (e) Actual (θ_{actual}) and Cassie's theoretical (θ_{Cassie}) apparent contact angles, (f) differences between θ_{actual} and θ_{Cassie} and (g) roll-off angles of water and oleic acid droplet on the overhang square columns with $l = 10 \ \mu\text{m}$ and various intervals of 10 μm (f = 25%), 30 μm (f = 11.1%), 45 μm (f = 4.9%) and 80 μm (f = 11.1%).

Fig. S5 Effects of viscosity on contact angles. Apparent contact angles of various liquid droplets with similar surface energy and different viscosity on the super-amphiphobic surface with square columns ($d = 10 \ \mu m$ and $l = 10 \ \mu m$).