Synergy Effect on Atomic Cluster M₄ Supported on MN₄-Graphene (M=Fe, Ni) for Hydrogen Evolution Reaction

Jiake Cui¹, Xiaojing Liu¹, Yongxue Wei¹, Xiangjian Shen*

¹ Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of

Education, Zhengzhou University, Zhengzhou 450001, China,

* To whom correspondence should be addressed: xjshen85@zzu.edu.cn

Table of content

Table S1: Binding energies between tetrahedral M_4 clusters and MN_4 -Gr substrates in different configurations.

Table S2: Binding energies of M_4 clusters in a planar form supported on MN_4 -Gr substrates.

Table S3: Bader charge (BC) of each metal atom and N atom of $M_4@MN_4$ -Gr modelcatalysts.

Figure S1: The optimized stable structures of the substrates and metal clusters.

Figure S2: Three basic configurations of optimized M₄@MN₄-Grmodel catalysts.

Figure S3:Final configurations of planar M₄ clusters initially bounded to MN₄-Gr substrates.

Figure S4: Schematic diagram of metal and N atoms labelling.

Figure S5: Schematic illustration of different adsorption sites on M_4 clusters supported on MN_4 -Gr substrates.

Figure S6:TheGibbs free energies of hydrogen adsorption $({}^{\Delta G_{H*}})$ inimplicit solvation model.

Figure S7: Configuration diagrams of the HER mechanism on four model catalysts.

Figure S8: The free energy diagrams of HER inimplicit solvation model.

Figure S9: Configuration diagram of two hydrogen atoms adsorbed on the $M_4@MN_4$ -Gr catalyst.

Table S1: The binding energies between tetrahedral M_4 clusters and MN_4 -Gr substrates in different configurations, including Regular-Tetrahedron (RT), Side-Tetrahedron (ST) and Inverted-Tetrahedron (IT),respectively.

Catalyat	E _b /(eV)				
Catalyst	RT	ST	IT		
Fe ₄ FeN ₄ Gr	2.352	2.233	1.158		
Fe ₄ NiN ₄ Gr	1.292	1.275	1.259		
Ni ₄ FeN ₄ Gr	2.491	2.306	2.315		
Ni ₄ NiN ₄ Gr	1.75	1.590	1.590		

Table S2: Binding energies of M_4 clusters in a planar form supported on MN_4 -Gr substrates.

Catalyst	E _b /(eV)
Flat-Fe ₄ @FeN ₄ Gr	2.255
Flat-Fe ₄ @NiN ₄ Gr	0.845
Flat-Ni ₄ @FeN ₄ Gr	1.603
Flat-Ni ₄ @NiN ₄ Gr	0.815

Table S3: Bader charge (BC) of each metal atom and N atom of $M_4@MN_4$ -Gr model catalysts.

Fe ₄ @FeN ₄ -Gr		Fe ₄ @NiN ₄ -Gr		Ni ₄ @FeN ₄ -Gr		Ni ₄ @NiN ₄ -Gr	
Element	BC(e)						
Fe1	-0.76	Ni1	-0.71	Fe1	-0.88	Ni1	-0.75
Fe2	-0.35	Fe1	-0.32	Ni1	-0.24	Ni2	-0.27
Fe3	0.08	Fe2	0.06	Ni2	-0.22	Ni3	-0.22
Fe4	-0.34	Fe3	-0.32	Ni3	0.11	Ni4	0.11
Fe5	-0.34	Fe4	-0.32	Ni4	-0.23	Ni5	-0.23
N1	1.19	N1	1.2	N1	1.18	N1	1.18
N2	1.13	N2	1.22	N2	1.11	N2	1.19
N3	1.21	N3	1.24	N3	1.18	N3	1.22
N4	1.13	N4	1.04	N4	1.18	N4	1.07

Figure S1:The optimized stable structures of the substrates and metal clusters, (a) FeN_4 -Gr, (b) NiN_4-Gr, (c) Fe₄ cluster, (d) Ni₄ cluster.

Figure S2:Three basic configurations of optimized $M_4@MN_4$ -Grmodel catalysts: Regular-Tetrahedron (RT), Side-Tetrahedron (ST) and Inverted-Tetrahedron (IT).

It can be clearly seen from Figure S2 andTable S1that the Regular-Tetrahedron is the

most stable in the three configurations, while the Inverted-Tetrahedron tends to be deformed. In the Inverted-Tetrahedron configuration, one vertex atom of the M_4 cluster interacts with the substrate, and the other three atoms are far away from the substrate, which is unstable. When more metal atoms in the M_4 cluster interact with the substrate like Side-Tetrahedron and Regular-Tetrahedronconfigurations, there will be more electron transfer between the cluster and the substrate, which will make the M_4 cluster stably bind to the MN₄-Gr substrate.

Figure S3:Final configurations of planar M_4 clusters initially bounded to MN_4 -Gr substrates. (a)-(d) are shown for $Fe_4@FeN_4Gr$, $Fe_4@NiN_4Gr$, $Ni_4@FeN_4Gr$ and $Ni_4@NiN_4Gr$, respectively.

Figure S4:Schematic diagram of metal and N atoms labelling: (a)-(d) are shown for Fe₄FeN₄Gr, Fe₄NiN₄Gr, Ni₄FeN₄Gr and Ni₄NiN₄Gr, respectively.

Figure S5: Schematic illustration of different adsorption sites on M_4 clusters supported on MN_4 -Gr substrates.

Figure S6:TheGibbs free energies of hydrogen adsorption $({}^{\Delta G_{H}}*)$ inimplicit solvation model.

Figure S7: Configuration diagrams of the HER mechanism on four model catalysts. (a)-(d) are Fe₄FeN₄Gr, Fe₄NiN₄Gr, Ni₄FeN₄Gr and Ni₄NiN₄Gr, respectively,

Figure S8:The free energy diagrams of HER inimplicit solvation model, following the Volmer-Heyrovsky pathway (dotted lines) and Volmer-Tafel pathway (solid lines) on various modelcatalysts.

Reaction pathway

