ELECTRONIC SUPPLEMENTARY INFORMATION

Vibrational mode-specific dynamics of the F⁻ + CH₃CH₂Cl multi-channel reaction

Viktor Tajti and Gábor Czakó*

MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary

* Email: gczako@chem.u-szeged.hu

Figure S1. Cross sections for the front-side attack (fs $S_N 2$), double-inversion (di $S_N 2$), and inducedinversion (ind. inv.) pathways of the F⁻ + CH₃CH₂Cl($v_k = 0, 1$) [k = 10, 7, 1, 3] reactions as a function of collision energy obtained without and with soft and hard ZPE constraints (for these channels the soft and hard cases are equivalent).

Figure S2. Reaction probabilities for the front-side attack (fs S_N2), double-inversion (di S_N2), and induced-inversion (ind. inv.) pathways of the F^- + CH₃CH₂Cl($\nu_k = 0, 1$) [k = 10, 7, 1, 3] reactions as a function of impact parameter at different collision energies.

Figure S3. Normalized symmetric CH₃ stretching mode specific vibrational distributions for the CH₃CH₂F product of the F^- + CH₃CH₂Cl($v_k = 0, 1$) [k = 10, 7, 1, 3] S_N2 reactions at different collision energies obtained with histogram binning (HB) and Gaussian binning (GB) using different full-width at half-maximum (δ) values.

Figure S4. Normalized CF stretching, CH₂ wagging, and symmetric CH₂ stretching mode specific vibrational distributions for the CH₃CH₂F product of the F^- + CH₃CH₂Cl($v_k = 0, 1$) [k = 10, 7, 1, 3] S_N2 reactions at different collision energies obtained with histogram binning.

Figure S5. Normalized mode-specific vibrational distributions for the C₂H₄ product of the $F^- + CH_3CH_2Cl(v_k = 0, 1) \rightarrow FH \cdots Cl^- + C_2H_4$ [k = 10, 7, 1, 3] reactions at different collision energies obtained with histogram binning.

Figure S6. Normalized mode-specific vibrational distributions for the C₂H₄ product of the F^- + CH₃CH₂Cl($v_k = 0, 1$) [k = 10, 7, 1, 3] syn-E2 reactions at different collision energies obtained with histogram binning.

Figure S7. Normalized mode-specific vibrational distributions for the C₂H₄ product of the F^- + CH₃CH₂Cl($v_k = 0, 1$) [k = 10, 7, 1, 3] anti-E2 reactions at different collision energies obtained with histogram binning.