Supplementary Information

Facile synthesis of multiphases cobalt-iron spinel with enriched oxygen vacancies for bifunctional oxygen electrocatalyst

Jianan Zhang,^a Luyu Ji, ^a Junbo Gong ^a and Zhao Wang^{*a}

Experimental Section

Preparation of CoO_x/C-D, CoO_x/C-C catalysts. The preparation of the precursor was similar to the description in the article. Specifically, $Fe(NO_3)_3 \cdot 9H_2O$ was replaced by $Co(NO_3)_2 \cdot 6H_2O$, and a total of 0.004 mol $Co(NO_3)_2 \cdot 6H_2O$ (1.16 g) was dissolved in the deionized water. And the subsequent process (the cold plasma and calcination methods) was same with the previous work. The catalysts were designed as $CoO_x/C-D$ and $CoO_x/C-C$, respectively.

Information about the cold plasma method. Dielectric barrier discharge plasma was used in our cold plasma method. The plasma power was from Corona. lab (CTR-2000K). Before processing the samples in the reactor, made sure to put the same mass of precursor in the reactor (200 mg), which was sufficiently grinding. DBD plasma method was a gentle treatment, and the temperature in the reactor was displayed by an infrared camera, which was below 50 °C (Fig. S3).

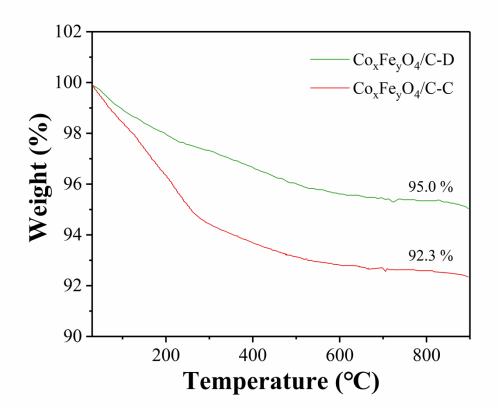


Fig. S1 TGA curves of $Co_xFe_vO_4/C$ -D and $Co_xFe_vO_4/C$ -C.

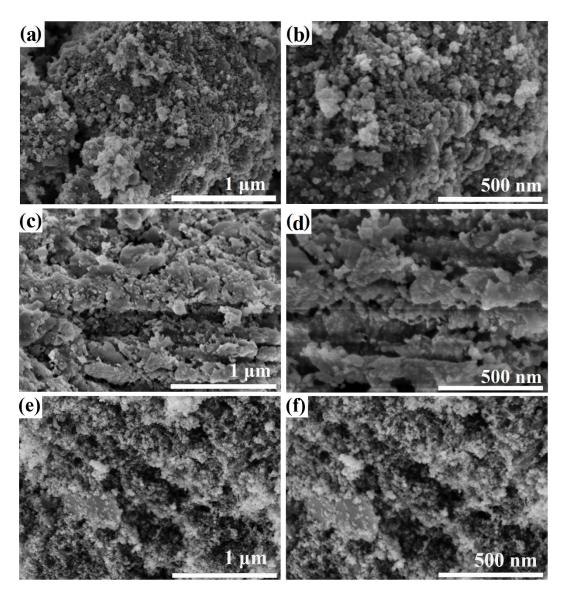


Fig. S2 SEM images at different scales of (a, b) $Co_xFe_yO_4/C-D$, (c, d) $Co_xFe_yO_4/C-C$, (e, f) $Co_xFe_yO_4/C-P$.

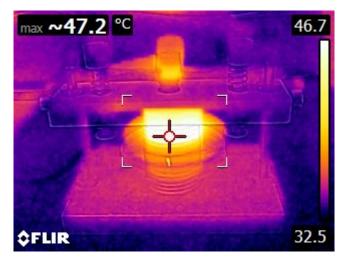


Fig. S3 Infrared image about the reactor of the DBD plasma.

Table ST Wolar lattos of Co, Fe, O, C and W in the samples determined by XI S						
	Co (wt.%)	Fe (wt.%)	O (wt.%)	C (wt.%)	N (wt.%)	
Co _x Fe _y O ₄ /C-D	2.80	1.08	15.96	77.58	2.58	
Co _x Fe _y O ₄ /C-C	1.18	0.81	5.94	91.35	0.71	
Co _x Fe _y O ₄ /C-P	20.18	9.31	46.89	25.63	0.10	

Table S1 Molar ratios of Co, Fe, O, C and N in the samples determined by XPS

 Table S2 The ratio of different types of oxygen of catalysts in XPS spectra.

	O1 O2 (Defect-		O3 (Physically	O2 / O1	
Sample -	(Lattice oxygen)	oxygen)	adsorbed water/C-O)	02701	
	Peak area (%) Peak area (%)		Peak area (%)	Peak area	
			Peak area (%)	radio	
Co _x Fe _y O ₄ /C-D	19.9	39.9	40.2	2.01	
Co _x Fe _y O ₄ /C-C	32.1	42.2	25.7	1.32	
Co _x Fe _y O ₄ /C-P	64.9	22.1	13.0	0.34	

Table S3 Ratios of Co^{3+}/Co^{2+} of as-obtained catalysts in Co $2p_{3/2}$ peaks spectra

	Species	Location	Co ³⁺ /Co ²⁺
	Co ³⁺	780.50	1.23
Co _x Fe _y O ₄ /C-D	Co ²⁺	782.57	1.25
	Co ³⁺	780.72	0.66
Co _x Fe _y O ₄ /C-C	Co ²⁺	782.25	0.66
	Co ³⁺	779.88	1 12
Co _x Fe _y O ₄ /C-P	Co ²⁺	781.30	1.13

Table S4 Ratios of Fe^{3+}/Fe^{2+} of as-obtained catalysts in Fe $2p_{3/2}$ spectra

	Species	Location	${\rm F}{\rm e}^{3+}/{\rm F}{\rm e}^{2+}$
	Fe ²⁺	711.10	0.92
Co _x Fe _y O ₄ /C-D	Fe ³⁺	713.20	0.83
	Fe ²⁺	710.58	0.75
Co _x Fe _y O ₄ /C-C	Fe ³⁺	713.31	0.75
	Fe ²⁺	710.27	1.05
Co _x Fe _y O ₄ /C-P	Fe ³⁺	712.93	1.05

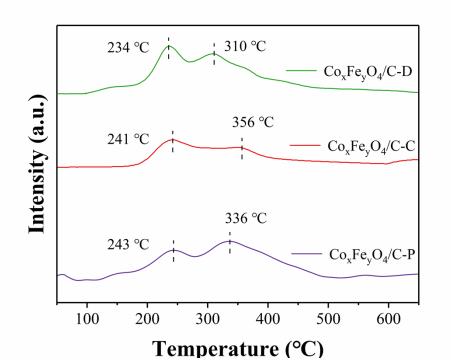


Fig. S4 O₂-TPD profiles of Co_xFe_yO₄/C-D, Co_xFe_yO₄/C-C and Co_xFe_yO₄/C-P.

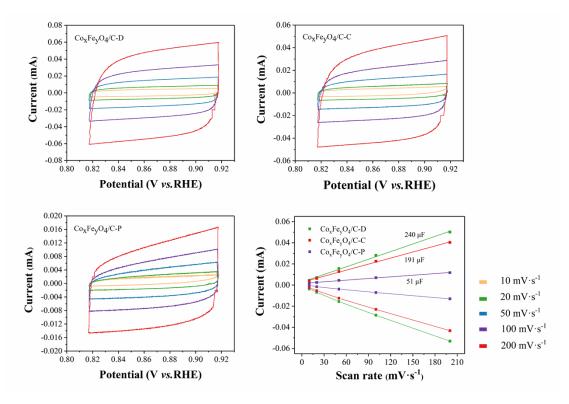


Fig. S5 CV curves of a) $Co_xFe_yO_4/C-D$, b) $Co_xFe_yO_4/C-C$ and c) $Co_xFe_yO_4/C-P$ at different scan rates, d) The fitted currents against the scan rates of catalysts.

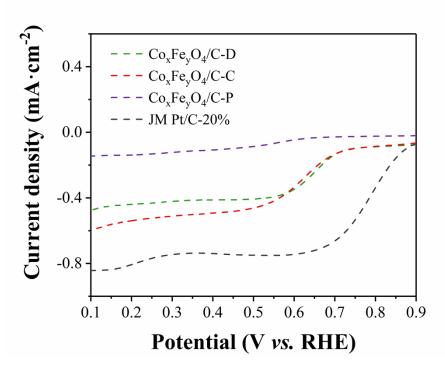


Fig. S6 LSV at 1600 rpm in N₂-saturated 0.1 M KOH solution.

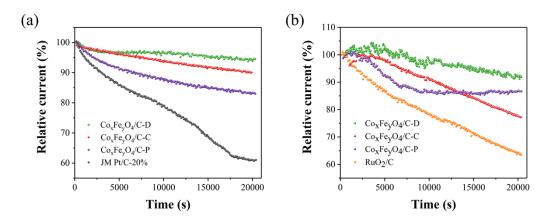


Fig. S7 Relative current-time (i-t) chronoamperometric responses for (a) the ORR and (b) the OER on oxides $Co_xFe_yO_4/C$ prepared by the cold plasma, calculation and coprecipitation methods and commercial Pt/C or RuO₂/C at a potential of -0.6 V (*vs.* Hg/HgO) for ORR and 0.75 V (*vs.* Hg/HgO) for OER in O₂-saturated 0.1 M KOH at a rotating speed of 1600 rpm.

Co _x Fe _y O ₄ /C-C and Co _x Fe _y O ₄ /C-P samples.				
	electrical resistivity	electronic conductivity		
	$(\Omega \cdot cm)$	$(\mathbf{S} \cdot \mathbf{cm}^{-1})$		
Co _x Fe _y O ₄ /C-D	0.0926	10.80		
Co _x Fe _y O ₄ /C-C	0.2930	3.41		
Co _x Fe _y O ₄ /C-P	0.4518	2.21		

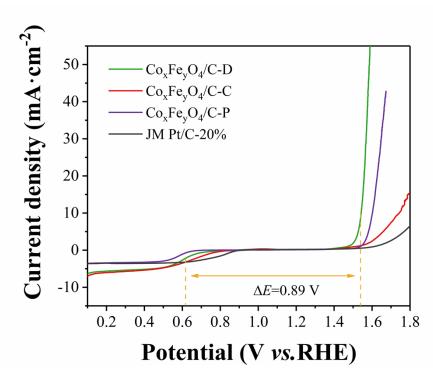

Table S5 The electronic conductivity at room temperature of the $Co_xFe_yO_4/C$ -D,

Table S6 Comparison of the synthesis methods of (Co, Fe)₃O₄ catalysts and their

	electrocatalytic performance.						
Catalysts	Preparation methods	Temperature / Time	E ₁₀ OER (V vs. RHE)	E _{1/2} ORR (V vs. RHE)	$\Delta E (\mathbf{V}) = E_{\mathbf{OER}} - E_{\mathbf{ORR}}$	Ref.	
multiphase cobalt- iron spinel	cold plasma method	~50 °C for 1h	1.53	0.64	0.89	this work	
CoFe ₂ O ₄ / N/S co- doped mesoporous carbon	hydrothermal	180 °C for 3h	1.7096	0.7846	0.925	12	
CoFe ₂ O ₄ /carbon nanotube	solvothermal & calcination method	180 °C for 12 h and annealed at 500 °C for 2 h	1.620	0.808	0.812	13	
Co- and Fe- containing mixed oxides	vapor deposition	~ 520 K for 5 min in an O ₂ (6– 8×10^{-6} mbar) and ~ 770 K for 60 min in UHV	1.550	0.520	1.030	14	
CoFe ₂ O ₄ hexagonal nanoplates	hydrothermal& calcination method	180 °C for 4 h and was calcinated in air at 300 °C for 3 h	1.620	0.580	1.040	15	

Catalysts	Preparation methods	Temperature / Time	E ₁₀ OER (V vs. RHE)	E _{1/2} ORR (V vs. RHE)	$\Delta E (V)$ $= E_{OER} - E_{ORR}$	Ref.
(Co, Fe) ₃ O ₄ /N- CNT	a mixing process and an impregnation technique	sonicate for 5 h; gas diffusion layer (GDL) substrates were annealed for 0.5 h at 300 °C	1.5548	0.6268	0.928	16
oxygen-vacancy- rich CoFe ₂ O ₄ anchored on cage-like carbon	solvothermal approach	180 °C for 24 h	1.590	0.765	0.825	17
Co _x Fe _{3-x} O ₄ / acetylene black	hydrothermal method	200 °C for 20 h	1.7066	0.5766	1.13	18
Co/CoFe ₂ O ₄ / N- doped graphene	solution- polymerization & pyrolysis	pyrolysis at 800 °C in Ar for 3h	1.630	0.670	0.960	19

Table S6 Comparison of the synthesis methods of $(Co, Fe)_3O_4$ catalysts and their electrocatalytic performance. (continued)

Fig. S8 Overall polarization curves of $Co_xFe_yO_4/C-D$, $Co_xFe_yO_4/C-C$, $Co_xFe_yO_4/C-P$ and the commercial Pt/C catalysts at 1600 rpm in O₂-saturated 0.1 M KOH solution.

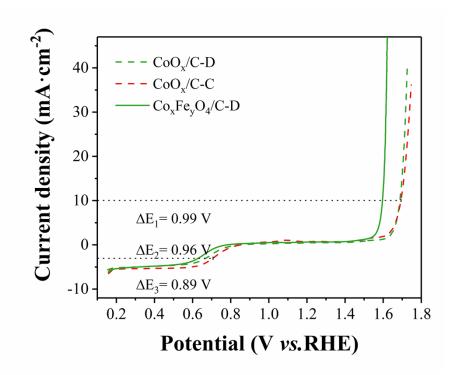


Fig. S9 Overall polarization curves of $CoO_x/C-D$, $CoO_x/C-C$ and $Co_xFe_yO_4/C-D$ at 1600 rpm in O₂-saturated 0.1 M KOH solution.