Supplementary Information

Biphenylene Monolayer: A Novel Nonbenzenoid Carbon allotrope with Potential Applications as Anode Materials for Highperformance Sodium Ion Batteries

Ting Han^a, Yu Liu^a, Xiaodong Lv^{b,c,*} and Fengyu Li^{a,*}

^a School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China

^b CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

^c Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, People's Republic of China

*Corresponding authors: lvxiaodong@nimte.ac.cn (XL); <u>fengyuli@imu.edu.cn (FL)</u>

Fig. S1 The electrostatic potential along the z-direction.

The work function (W_F) of two-dimensional biphenylene was calculated via the following expression:

$$W_F = \Phi - E_F$$

where Φ is the electrostatic energy in the vacuum away from the surface, E_F is the Fermi energy.

Fig. S2 The calculated phonon spectra of the 2D biphenylene monolayers. The small "U-shape" negative values near gamma point is a signature of the flexural acoustic mode but not instability, and is a common phenomenon in first-principles calculations of 2D materials.^[Ref.S1]

Fig. S3 Variation in potential energy at 500 (a) and 1000 K (b), and the insect is the final structure of biphenylene during 5 ps' FPMD simulation. C atoms are represented by brown balls.

Fig. S4 The band structure (a) and the partial density of states (b) of the biphenylene monolayer. The Fermi energy is set to 0 eV as indicated by the red horizontal dashed lines.

Fig. S5 The average energy per Na (E_{ave}) in Na_xC with respect to biphenylene monolayer and Na bulk bcc metal.

Fig. S6 The optimized configurations and the corresponding average adsorption energies of Na for $Na_{0.056}C$. The brown and purple balls represent carbon and sodium, respectively.

Fig. S7 The optimized configurations and the corresponding average adsorption energies of Na for $Na_{0.074}C$. The brown and purple balls represent carbon and sodium, respectively.

Fig. S8 The optimized configurations and the corresponding average adsorption energies of Na for $Na_{0.074}C$. The brown and purple balls represent carbon and sodium, respectively.

Fig. S9 The open circuit voltage profile as a function of Na concentration.

The OCV can be evaluated from the following common half-cell reaction of the charge/discharge process:

$$C + xNa^{n+} + xne^{-} \leftrightarrow Na_xC$$
 (S1)

when the volume and entropy effects during the sodiation process were neglected, the OCV can be derived from the average adsorption energy (E_{ave}) as:

$$OCV = -E_{ave}/xne$$
(S2a)

$$E_{\text{ave}} = (E_{\text{C}} - E_{\text{NarC}} - xE_{\text{Na-bulk}})/x$$
(S2b)

where $E_{\rm C}$, $E_{\rm NaxC}$, and $E_{\rm Na-bulk}$ are the energy of pristine biphenylene monolayer, the total energy of Na adsorbed biphenylene monolayer, and the energy per Na atom in the sodium *bcc* bulk, respectively, *n* is the number of valence electron (n = 1 for Na), *x* is the chemical content of sodium atoms.

	a (Å)	<i>b</i> (Å)	Lattice variation (%)	
C	11.298	13.557		
Na _{0.019} C	11.311	13.566	0.12	0.07
Na _{0.037} C	11.318	13.566	0.18	0.07
Na _{0.056} C	11.326	13.566	0.25	0.07
Na _{0.074} C	11.331	13.566	0.29	0.07
Na _{0.148} C	11.357	13.566	0.52	0.07
Na _{0.481} C	11.440	13.579	1.26	0.16

Table S1. The calculated lattice constant (a, b, in Å), lattice change of biphenylene monolayer without and with adsorbed Na atoms.

Reference:

[Ref.S1] (a) H. Yin, G. Zheng, Y. Wang and B. Yao, *Phys. Chem. Chem. Phys.*, 2018, **20**, 19177–19187; (b) V. Zólyomi, N. D. Drummond and V. I. Fal'ko, *Phys. Rev. B*, 2014, **89**, 205416.