Supplementary Information for

C₆₀ThSe₂/ITO interface formation: photoemission – based charge transfer recognition for organic electronics application

Maciej Krzywiecki^{1*}, Szymon Smykała², Justyna Kurek³, Sylwia Fijak³, Radosław Motyka³, Sandra Pluczyk-Małek³, and Agata Blacha-Grzechnik³

¹ Institute of Physics – CSE, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland

² Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18A, 44-100, Gliwice, Poland

³ Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland

Cyclic Voltammetry

Fig.S1. CV curve recorded in 0.1 mM solution C₆₀ThSe₂ in 0.2 M Bu₄NBF₄/CH₂Cl₂ with ITO as a working electrode, 15 scan cycles, scan rate: 0.1 V/s.

Fig.S1 presents the CV curve recorded in C_{60} ThSe₂ solution with ITO acting as a working electrode. Similarly to our previous studies on the terthiophene-fullerene dyads [1], the irreversible oxidation is observed at ca. 1.3 V, that arises from the oxidation of organic unit initiating the electropolymerization process. Further sweeping of the potential reveals the new redox couple at ca. 1.1 V and causes the continuous increase in the recorded current. These together confirm the polymerization of C_{60} ThSe₂ dyad and the simultaneous deposition of the conjugated polymeric film on the ITO surface.

UV-VIS Spectroscopy

Fig.S2. UV-Vis spectra of C_{60} ThSe₂/ITO (5c) (red solid line) and C_{60} ThSe₂ in dichloromethane (black dashed line). In the case of UV-Vis spectrum of the layer, ITO was used as a reference, while in the case of C_{60} ThSe₂ solution – dichloromethane.

UV-Vis spectra of electrochemically deposited C_{60} ThSe₂ layer, given in Fig.S2, show one broad absorption band with maximum at ca. 360 nm, arising from the fullerene and conjugated polymeric chain ($\pi \rightarrow \pi^*$ transition) absorption [1]. The recorded band is significantly broaden with onset being batochromically shifted when compared with the UV-Vis spectrum of C_{60} ThSe₂ dyad in solution, indicating the elongation of the conjugated chain [2]. The onset of the absorbance band, and thus the calculated optical band gap, was steadily increasing with the increase in the number of electropolymerization cycles (Table S1).

Tab. S	511.	Optical	data
--------	------	---------	------

Sample set	λ _{onset} / nm	Optical band gap E _g / eV
5c	465	2.67
10c	484	2.56
15c	493	2.52

*Optical band gap $E_g=1240/\lambda_{onset}$

References

- A. Blacha-Grzechnik, M. Krzywiecki, R. Motyka, Electrochemically Polymerized Terthiopehene
 C60 Dyads for the Photochemical Generation of Singlet Oxygen, J. Phys. Chem. C. 123 (2019)
 25915–25924. https://doi.org/10.1021/acs.jpcc.9b06101.
- B. Lu, S. Zhen, S. Ming, J. Xu, G. Zhao, RSC Advances, (2015) 70649–70660. https://doi.org/10.1039/c5ra11849b.