Supplementary Materials

The doping effects on antibonding states and carriers of two-

dimensional PC₆

Mi Zhong ^a, Wei Zeng ^b, Han Qin ^c, Sheng-Hai Zhu ^a, Xing-Han Li ^a, Fu-Sheng Liu ^a, Bin Tang ^d, Qi-Jun Liu _a,*

^a School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, People's

Republic of China

^b Teaching and Research Group of Chemistry, College of Medical Technology, Chengdu University of

Traditional Chinese Medicine, Chengdu 610075, People's Republic of China

^c School of Science, Xihua University, Chengdu 610039, People's Republic of China

^d State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072,

People's Republic of China

Correspondence about the paper at the following address and e-mail address:

School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031,

People's Republic of China

Qi-Jun Liu, E-mail: qijunliu@home.swjtu.edu.cn

^{*} Corresponding author. E-mail: qijunliu@home.swjtu.edu.cn

Contents:

Figure S1. Calculated total energies as a function of N for the doped PC₆, N is optimization step.

Table S1 The optimized lattice constants, bond length, and bond angle of doped PC6 along with the pure system.

Figure S2. The top and side views of the doped PC₆, dopants in black. (a) the bond length and bond angel corresponding to the ones in Table 1. (b) P-site substituted systems with carbon-coplanar dopants (C, N, and O atoms). (c) C-site substituted systems with carbon-coplanar dopants (Si, N, B, Al and Ga). (d) P-site substituted systems with dopants above the carbon-plane (Si, Ge, Sn, As, Sb, S, Se, Te). (e) C-site substituted systems with dopants above the carbon-plane (Ge, P, As and Sb atoms). (f) C-site substituted systems with dopants below the carbon plane (In and Sn atom).

Figure S3. (a1) and (b1) The total density of states (TDOS) for the X-doped PC6. (a2) and (b2) Partial density of states (PDOS) for the X-doped PC6. X dopants from group IV and VI. In TDOS, the red line is for spin-up states and the black line is for spin-down states.

Figure S4. Spatial spin density distributions of the group IV and VI substitutional doped PC_6 (Yellow/blue color represents the spin-up/down density distributions).

Table S2. The actually Fermi energy (EF') and normalized position of Fermi level.

Figure S1. Calculated total energies as a function of N for the doped PC₆, N is optimization step.

			0 (0)					0 (0)	2 (2)
	<i>a</i> , <i>b</i> (Å)	d (Å)	θ(°)		<i>a</i> , <i>b</i> (Å)	$d_{l}(\text{\AA})$	d_2 (Å)	$ heta_{I}(^{\circ})$	$\theta_2(^{\circ})$
pure	13.395, 13.395	1.804	98.173	pure	13.395, 13.395	1.360	1.804	116.697	125.000
IV group			III gro	up					
C _P	13.373, 13.373	1.438	119.845	B_{C}	13.458, 13.419	1.488	1.860	117.427	126.122
Si_P	13.448, 13.448	1.733	108.339	Al_C	13.511, 13.400	1.848	2.212	113.997	112.399
Ge _P	13.407, 13.410	1.947	93.706	Ga_{C}	13.563, 13.444	1.858	2.195	120.643	115.677
Sn_P	13.398, 13.398	2.097	86.707	In _C	13.477,13.375	1.990	2.419	97.914	105.760
V group		IV gro	up						
N _P	13.330, 13.330	1.427	119.802	Si_C	13.529, 13.427	1.716	2.129	119.125	117.947
As_P	13.397, 13.397	1.922	93.096	Ge _C	13.479, 13.427	1.933	2.353	101.223	92.487
Sb_P	13.401, 13.401	2.059	88.118	Sn _C	13.436, 13.381	2.104	2.675	71.609	87.703
VI group		V group							
O _P	13.360, 13.358	1.532	116.691	N_{C}	13.370, 13.389	1.378	1.781	116.527	125.201
S_P	13.414, 13.414	1.790	101.012	$P_{\rm C}$	13.480, 13.417	1.750	2.192	108.072	104.149
Se _P	13.422, 13.422	1.915	96.127	As_C	13.488, 13.418	1.877	2.285	104.167	97.430
Te _P	13.424, 13.424	2.071	90.213	Sb_{C}	13.490, 13.412	2.021	2.433	99.379	90.945

Table S1 The optimized lattice constants, bond length, and bond angle of doped PC6 along with the pure system.

Figure S2. The top and side views of the doped PC₆, dopants in black. (a) the bond length and bond angel corresponding to the ones in Table 1. (b) P-site substituted systems with carbon-coplanar dopants (C, N, and O atoms). (c) C-site substituted systems with carbon-coplanar dopants (Si, N, B, Al and Ga). (d) P-site substituted systems with dopants above the carbon-plane dopants (Si, Ge, Sn, As, Sb, S, Se, Te). (e) C-site substituted systems with dopants above the carbon-plane (Ge, P, As and Sb atoms). (f) C-site substituted systems with dopants below the carbon plane (In and Sn atom).

Figure S3. (a_1) and (b_1) The total density of states (TDOS) for the X-doped PC₆. (a_2) and (b_2) Partial density of states (PDOS) for the X-doped PC₆. X dopants from group IV and VI. In TDOS, the red line is for spin-up states and the black line is for spin-down states.

Figure S4. Spatial spin density distributions of the group IV and VI substitutional doped PC_6 (Yellow/blue color represents the spin-up/down density distributions).

Systems	E_{F} ,	$E_{ m F}$
Pure	-2.55	0.00
Op	-2.19	0.36
S _P	-2.20	0.36
Sep	-2.17	0.39
Tep	-2.12	0.43
N _C	-2.30	0.25
P _C	-2.35	0.20
As _C	-2.29	0.26
Sb_{C}	-2.32	0.23

Table S2. The actually Fermi energy $(E_{F'})$ and normalized position of Fermi level.