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Mechanism used in the simulations of the data of Alegre et al.1

1 SO4
•– + Cl–  SO4

2– + Cl• k = 2.7E8 M–1 s–1

2 Cl• + Cl ⇌ Cl2
•– kf = 8.5E9 M–1 s–1, kr = 6E4 s–1

3 Cl2
•– + Cl2

•–  Cl2 + Cl– + Cl– log k = 8.8 + 1.6µ1/2/(1 + µ1/2)
4 Cl• + H2O ⇌ ClOH•– + H+ kf = 1.5E5 s–1, kr = 3E10 M–1 s–1

5 ClOH•– ⇌ HO• + Cl– kf = 6.1E9 s–1, kr = 4.3E9 M–1 s–1

6 Cl2 + H2O  ClOH + Cl– + H+ k = 11 s–1

7 Cl2 + Cl– ⇌ Cl3
– kf = 1E10 M–1 s–1, kr = 5.6E10 s–1

8 SO4
•– + S2O8

2–  SO4
2– + S2O8

•– k = 1.2E5 M–1 s–1

9 SO4
2– + HO•  SO4

•– + HO– 1E6 M–1 s–1

10 HO• + HO•  H2O2 5.5E9 M–1 s–1

11 H+ + OH– ⇌ H2O kf = 1E10 M–1 s–1, kr = 1E–4 M s –1

Mechanism and rate constants as in Table 1 of Alegre et al. with the following exceptions. 
Reaction 6 in Allegre et al. is omitted because of its insignificant contribution at the pH of the 
simulations (pH 3). Reaction 4 above replaces reactions 8, 9 and 10 in Alegre et al. The rate 
constant for forward reaction 4 is determined by the pKa of Cl• (pKa = 5.3)2 and the rate constant 
for the reverse of reaction 4. The reverse of reaction 4 above replaces reaction 11 in Alegre et al. 
Reaction 7 in Alegre et al. is omitted because it is equivalent to the reverse of reaction 2 above. 
Reaction 14 in Allegre et al. is omitted because it is equivalent to forward reaction 2 above. 
Reaction 10 above is added as mentioned at the bottom right of page 3119 in Alegre et al. with 
its rate constant as in Buxton et al.3 Reaction 11 is added to maintain pH equilibrium.

The ionic strength adjustment to the rate constant for eq 3 needs to be applied. The solutions of 
Alegre et al. had [K2S2O8] = 5 mM in the conventional flash and 20 mM in the laser experiments 
and various amounts of NaCl; the pH was 3 - 2 due to impurities in the K2S2O8. At µ = 0.1 M, k3 
= 1.5E9.

Note that step 8 (reaction of SO4
•– with S2O8

2–) consumes a very small fraction of the SO4
•– at the 

Cl– concentrations used. The S2O8
•– produced is not consumed in the mechanism of Alegre et al.
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A comprehensive list of the 18 reported illegal loops involving HClOH•.

Subsequent reports with illegal loops. In addition to the publications having reversible 
loops involving reactions 1, 2, or 3 that violate closure (meaning that the rate constants do not 
agree with the requirements imposed by the loop composition), there are many publications that 
use reactions 1, 2, or 3 in illegal loops, which violate the principle of detailed balancing. As has 
been explained elsewhere, illegal loops are sets of reactions like reversible loops except where 
one or more of the steps are irreversible and unopposed by other irreversible steps.4 Although it 
is often possible to rectify illegal loops by making the irreversible steps reversible with rate 
constants defined by the other steps, this is unlikely to be satisfactory in the present system 
because of the unreliability of those other rate constants.

One of the illegal loops was reported previously as illegal Loop D:5

Illegal Loop 1 (D)
HClOH•  Cl• + H2O
Cl2

•– + H2O ⇌ HClOH• + Cl–

Cl• + Cl– ⇌ Cl2
•–

This loop is the same as the first reversible loop (eqs 1, 3, and 4 in the main text) except that its 
first step is irreversible. Eighteen publications were previously identified as having mechanisms 
that included Loop D.5 Here we report an additional 38 publications that have mechanisms 
including Loop D.6–43 In our previous report we showed that correcting Loop D by supplying the 
requisite value for the reverse rate constant in the first step had no effect on the simulations of 
the overall mechanism in one of the publications. This outcome was traced to the fact that the 
first step could be eliminated entirely without affecting the results of the simulation. The rate 
constants in Matthew and Anastasio for the steps in illegal Loop 1 require a value of 1.5 s–1 for 
the reverse rate constant of the first step.44 Simulations of the loop with initial concentrations of 
0.01 M Cl– and 1 µM Cl• yield a steady-state HClOH• concentration of 2.6  10–11 M irrespective 
of whether the reverse of the first step is included or not. This result arises because the second 
and third steps are much faster and establish the equilibrium concentration of HClOH•, and it 
explains why the first step can be omitted entirely. Loop 7 below is an example of the opposite 
behavior, where supplying the required rate constant in an illegal loop leads to major changes in 
the concentrations.

Another illegal loop:

Illegal Loop 2
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HClOH•  Cl• + H2O
Cl2

•– + H2O ⇌ HClOH• + Cl–

Cl• + OH–  ClOH•–

ClOH•– + Cl– ⇌ Cl2
•– + OH–

This illegal loop appears in at least 19 publications.13, 19, 24, 25, 29, 34, 38, 41, 45–55

Illegal Loop 3 differs from Loop 2 by having only the first step irreversible:

Illegal Loop 3
HClOH•  Cl• + H2O
Cl2

•– + H2O ⇌ HClOH• + Cl–

Cl• + OH– ⇌ ClOH•–

ClOH•– + Cl– ⇌ Cl2
•– + OH–

This illegal loop appears in Zhao et al. 2019,56 and Zhou et al. 2019.57 
Illegal loop 4 differs from Loop 2 by having only the third step irreversible:

Illegal Loop 4

HClOH• ⇌ Cl• + H2O
Cl2

•– + H2O ⇌ HClOH• + Cl–

Cl• + OH–  ClOH•–

ClOH•– + Cl– ⇌ Cl2
•– + OH–

This illegal loop appears in at least 5 publications.58–62 
Another illegal loop involving reactions 1, 3 and 4 has the first step in Loop 1 irreversible 

in the opposite direction:

Illegal Loop 5
Cl• + H2O  HClOH•

HClOH• + Cl–⇌ Cl2
•– + H2O

Cl2
•– ⇌ Cl• + Cl–

This illegal loop appears in at least three publications.63–65 Martire et al. include this loop with 
the first step shown as reversible but with no reverse rate constant provided.66

A 6th illegal loop treats the second step as being irreversible:
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Illegal Loop 6
Cl• + H2O ⇌ HClOH•

HClOH• + Cl–  Cl2
•– + H2O

Cl2
•– ⇌ Cl• + Cl–

This illegal loop appears in a 2020 publication.67 
There are several illegal loops in which the acid dissociation of HClOH• (eq 2, main text) 

is irreversible. One of these was identified in our earlier publication as Loop E:5 

Illegal Loop 7 (E)
HClOH•  HOCl•– + H+

Cl2
•– + H2O ⇌ HClOH• + Cl–

HOCl•– + Cl– ⇌ Cl2
•– + OH–

H+ + OH–⇌ H2O

In addition to the 24 publications previously identified as having illegal Loop E, it also appears 
in 26 newly identified publications.7, 12, 14, 15, 17, 20–22, 27–32, 35–40, 42, 61, 62, 68–72 The rate constants in 
Xiang et al. 2022 require a value of 5.7  1011 M–1 s–1 for the reverse of the first step.72 
Simulations of Loop 7 at pH 3 with 1 mM Cl– and 1 µM Cl2

•– show that the steady-state 
concentration of HClOH• changes from 9.8  10–14 M to 2.6  10–10 M when the reverse rate 
constant of the first step is increased from zero to its required value. This example thus shows 
that correcting an illegal loop can have large consequences.

Illegal loop 8 differs from Loop 7 by having two irreversible steps:

Illegal Loop 8
HClOH•  HOCl•– + H+

Cl2
•– + H2O  HClOH• + Cl–

HOCl•– + Cl– ⇌ Cl2
•– + OH–

H+ + OH– ⇌ H2O

This illegal loop appears in Li et al. 2017,73 Guan et al. 2018,74  and Zhang et al. 2019.75

Illegal loop 9 differs from Loop 7 by having the first three steps irreversible:

Illegal Loop 9
HClOH•  HOCl•– + H+
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Cl2
•– + H2O  HClOH• + Cl–

HOCl•– + Cl–  Cl2
•– + OH–

H+ + OH– ⇌ H2O

This loop appears in Wu et al. 2019,76 Chow et al. 2021,77 and Wu et al. 2021.78 
Illegal loop 10 also differs from Loop 7 by having three irreversible steps, but in this case 

one of the irreversible steps is the reaction of H+ with OH–. Mechanisms with this irreversible 
step are unable to simulate the pH properly.

Illegal Loop 10
HClOH•  HOCl•– + H+

Cl2
•– + H2O  HClOH• + Cl–

HOCl•– + Cl– ⇌ Cl2
•– + OH–

H+ + OH–  H2O

This illegal loop appears in Li et al. 2022.79

Another group of illegal loops involving the irreversible acid dissociation of HClOH• also 
includes the conversion of HOCl•– to Cl•. One of these is Loop 11:

Illegal Loop 11
HClOH•  HOCl•– + H+

HOCl•– + H+ ⇌ Cl• + H2O
Cl• + Cl– ⇌ Cl2

•–

Cl2
•– + H2O ⇌ HClOH• + Cl–

This loop appears in at least 16 publications.7, 9, 12, 13, 15, 20, 21, 24, 25, 34, 38, 41, 43, 45, 80–82

An illegal loop that differs from Loop 11 by having two irreversible steps is as follows:

Illegal Loop 12
HClOH•  HOCl•– + H+

HOCl•– + H+ ⇌ Cl• + H2O
Cl• + Cl– ⇌ Cl2

•–

Cl2
•– + H2O  HClOH• + Cl–

This illegal loop appears in at least 9 publications.19, 74, 75, 79, 83–87 
An illegal loop that differs from Loop 11 by having three irreversible steps is as follows:
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Illegal Loop 13
HClOH•  HOCl•– + H+

HOCl•– + H+ ⇌ Cl• + H2O
Cl• + Cl–  Cl2

•–

Cl2
•– + H2O  HClOH• + Cl–

This illegal loop appears in Li et al. 2017,73 and Li et al. 2020.88 
An illegal loop that differs from Loop 11 in having all steps irreversible is as follows:

Illegal Loop 14
HClOH•  HOCl•– + H+

HOCl•– + H+  Cl• + H2O
Cl• + Cl–  Cl2

•–

Cl2
•– + H2O  HClOH• + Cl–

This illegal loop appears in Wu et al. 2019,76 Chow et al. 2021,77 and Wu et al. 2021.78 
An illegal loop involving the irreversible acid dissociation of HClOH• and the reversible 

hydration of Cl• is as follows:

Illegal Loop 15
HClOH•  HOCl•– + H+

Cl• + H2O ⇌ HClOH•

HOCl•– + H+  Cl• + H2O

This illegal loop appears in at least 8 publications.44, 58, 61, 62, 68, 69, 89, 90

Loop 16 is the same as Loop 15 except that the last step is reversible:

Illegal Loop 16
HClOH•  HOCl•– + H+

Cl• + H2O ⇌ HClOH•

HOCl•– + H+ ⇌ Cl• + H2O

This illegal loop appears in Fu et al. 2019,59 Yang et al. 2019,60 Jirasek and Lukes 2020,67 and 
Asghar et al. 2022.82
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Another category of illegal loops treats the HClOH• acid dissociation as reversible where 
some other reaction is irreversible. Two of these are as follows:

Illegal Loop 17
H+ + HOCl•– ⇌ HClOH•

HClOH• + Cl– ⇌ Cl2
•– + H2O

Cl2
•– + OH–  HOCl•– + Cl–

H2O ⇌ H+ + OH–

This illegal loop appears in Alegre et al. 2000,1 and Szabo et al. 2016.91

Illegal Loop 18
HClOH• ⇌ H+ + HOCl•–

Cl2
•– + H2O  HClOH• + Cl–

HOCl•– + Cl– ⇌ Cl2
•– + OH– 

H+ + OH– ⇌ H2O

Illegal loop 18 appears in Sun et al. 2022.92 
It is possible to make Loops 1, 3 – 7, 11, 16, 17 and 18 legal by supplying the requisite 

reverse rate constants, which can be calculated easily from the other rate constants in the loops. 
The results, however, are unlikely to be satisfactory given the dubious support for some of the 
other rate constants in the loops. Similarly, Loops 2 and 15 can be made legal by supplying the 
well-established rate constant for the reverse of the third step,93 which would then define the 
reverse rate constant for the first step; the result, again, is unlikely to be satisfactory. To make 
Loops 8 – 10 and 12 – 14 legal would require supplying rate constants for two reactions 
involving HClOH•, which cannot be done reliably at this time.
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