Supporting Information

A DFT study on second-order nonlinear optical properties of Ru (II) polypyridine complexes

Yu Chen, Yuan Zhang, Yang Shen, Yuanyuan Zhao,¹ and Yong-Qing Qiu²

Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China

¹ Corresponding Author. Fax: +86043185099291

E-mail addresses: yuanyuan-zhao@outlook.com (Y. Y. Zhao)

² Corresponding Author. Fax: +86043185098768.

E-mail addresses: <u>qiuyq466@nenu.edu.cn</u> (Y. Q. Qiu)

General Comments

Fig. S1. Polarizabilities α (a.u.) of all studied complexes calculated by four functionals with 6-31+G(d) basis set.

Fig. S2. Total first hyperpolarizabilities β_{tot} (a.u.) of all studied complexes calculated by four functionals with 6-31+G(d) basis set.

Fig. S3. Plots of $-y\rho_{yy}^{(2)}$ for the neutral complexes **1-10** (yellow color represents positive value, pink color represents negative value, respectively).

Fig. S4. Natural transition orbitals diagrams of complexes 1-10 obtained at the B3LYP/6-31+G(d) level of theory. Red and blue parts correspond to electron depletion and accumulation, respectively.

Table S1 Selected bond lengths (Å) and bond angles (°) of all studied complexes obtained at the PBE1PBE/6-31G(d)/SDD level.

Fig. S1 Polarizabilities α (a.u.) of all studied complexes calculated by four functionals with 6-31+G(d) basis set

Fig. S2 Total first hyperpolarizabilities β_{tot} (a.u.) of all studied complexes calculated by four functionals with 6-31+G(d) basis set

Figure S3 Plots of $-y\rho_{yy}^{(2)}$ for the neutral complexes **1-10** (yellow color represents positive value, pink color represents negative value, respectively).

Transition 1			
1 Weight: L'=0.101 Ru=0.737 L=0.162		Weight: L'=0.023 Ru=0.061 L=0.917	
2 Weight: L'=0.110 Ru=0.729 L=0.161		Weight: L'=0.021 Ru=0.132 L=0.846	
3 Weight: L'=0.615 Ru=0.321 L=0.065		Weight: L'=0.072 Ru=0.264 L=0.663	
4 Weight: L'=0.124 Ru=0.730 L=0.146		Weight: L'=0.065 Ru=0.085 L=0.850	
5 Weight: L'=0.057 Ru=0.688 L=0.255		Weight: L'=0.197 Ru=0.102 L=0.702	
6 Weight: L'=0.063 Ru=0.759 L=0.178		Weight: L'=0.034 Ru=0.028 L=0.945	
7 Weight: L'=0.076 Ru=0.750 L=0.174		Weight: L'=0.212 Ru=0.499 L=0.288	

Fig. S4. Natural transition orbitals diagrams of complexes 1-10 obtained at the B3LYP/6-31+G(d) level of theory. Red and blue parts correspond to electron depletion and accumulation, respectively.

Computational detail:

"The magnitude of charge transfer(q^{CT}) is calculated as,

$$q^{CT} = \int \rho_+(r) dr = \int \rho_-(r) dr$$

Where ρ_+ and ρ_- represent an increase and a decrease of the density in space resulting from the electronic transition.

And the length of charge shift (d^{CT}) is thus defined as the distance separating between the starting and ending points of transfer,

$$d^{CT} = \left| r_{+} - r_{-} \right|$$

where r_{+} and r_{-} are defined as

$$r_{+} = (x_{+}, y_{+}, z_{+}) = \frac{1}{q^{CT}} \int r \rho_{+}(r) dr$$
$$r_{-} = (x_{-}, y_{-}, z_{-}) = \frac{1}{q^{CT}} \int r \rho_{-}(r) dr$$

Complex	Ru-N ₁	Ru-N ₂	Ru-N ₃	Ru-N ₄	Ru-N ₅	Ru-N ₆	∠N₅- Ru-N ₆	∠N ₃ - Ru-N ₄	$\Delta r_{ m Ru-N}$
1 ^a	2.071	2.054	2.073	2.069	2.065	2.058	78.6	80.0	
1 ^{PBE1PBE}	2.086	2.082	2.086	2.083	2.073	2.073	78.4	79.3	0.013
1 ^{B3LYP}	2.115	2.111	2.115	2.115	2.101	2.101	78.8	78.8	0.023
1 ^{wB97XD}	2.107	2.100	2.107	2.100	2.090	2.090	78.2	79.0	0.034
2 ^a	2.072	2.070	2.060	2.078	2.062	2.058	78.8	79.5	
2	2.082	2.085	2.085	2.081	2.074	2.074	78.2	79.3	
3	2.075	2.084	2.084	2.075	2.074	2.074	78.0	79.3	
4	2.073	2.073	2.077	2.077	2.077	2.077	78.6	79.2	
5	2.086	2.088	2.087	2.085	2.067	2.068	79.2	78.7	
6	2.075	2.075	2.071	2.076	2.076	2.071	78.4	78.8	
7	2.078	2.079	2.071	2.071	2.079	2.078	78.1	78.8	
8	2.083	2.086	2.086	2.083	2.071	2.072	78.8	78.8	
9	2.068	2.068	2.078	2.078	2.078	2.080	78.5	78.7	
10	2.081	2.080	2.080	2.080	2.063	2.064	78.7	78.7	

Table S1 Selected bond lengths (Å) and bond angles (°) of all studied complexesobtained at the PBE1PBE/6-31G(d)/SDD level.

Note: The a denotes as the experimental values that are from Ref. 42.