Supporting Information

FeP₂ monolayer: Isoelectronic analogue of MoS₂ with excellent

electronic and optical properties

By

Chen Yan¹, Jiuqi Yi¹, Dan Li^{1*}, Chang Xu¹, and Longjiu Cheng^{1,2*}

¹Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, 230601, PR China

²Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, PR China

*Corresponding authors email: clj@ustc.edu(L.C.); ahulidan@aliyun.com(D.L.)

Index	Page
1.O ₂ adsorption sites on the FeP ₂ monolayer	2
2. The oxidation resistance of the FeP ₂ monolayer	3
3. The band structure of K on the FeP ₂ monolayer	4
4. The open circuit voltage profiles of K on the FeP2 monolayer	5
5. Thermal stability of the FeP ₂ monolayer	6
6. Adsorption Energies on the FeP ₂ monolayer	7
7. Structural information of the FeP ₂ monolayer	7

1. O₂ adsorption sites on the FeP₂ monolayer

Fig. S1. Top view of several other adsorption sites for O_2 and the corresponding adsorption energies.

2. The oxidation resistance of the FeP₂ monolayer

Fig. S2. Total energy and a snapshot of the FeP_2 monolayer with 3 O_2 molecules after a AIMD simulation of 5 ps at 300 K.

3. The band structure of K on the FeP₂ monolayer

Fig. S3. Calculated band structure of 2D $Fe_{16}P_{32}K$ from PBE method.

4. The open circuit voltage profiles of K on the FeP₂ monolayer

Fig. S4. Average voltages of different K concentrations in FeP_2K_x .

5. Thermal stability of the FeP₂ monolayer

Fig. S5. AIMD simulation of the FeP_2 monolayer at 400 and 500 K, variation of energy fluctuation with time step and the snapshot of the FeP_2 monolayer.

6. Adsorption Energies on the FeP₂ monolayer

Table S1. Adsorption energies of various sites for K on the FeP₂ monolayer.

Site	\mathbf{A}_{1}	A_2	A ₃	A ₄	A_5
E _{ad} (eV)	-1.78	-1.61	-1.76	A_1	A_1

7. Structural information of the FeP₂ monolayer

Table S2. Structural information of the predicted FeP₂ monolayer.

Lattice parameters(Å, °)	Wyckoff position, fractional coordinates		
		x	У	Ζ
a = b = 2.78	Fe	0.33333	0.66667	0.50000
c = 30	Р	0.66667	0.33333	0.55453
$\alpha = \beta = 90$	Р	0.66667	0.33333	0.44547
$\gamma = 120$				

CONCAR

FeP₂

2.77998521243123	0.00000000000	0000 0.00000000000000000000000000000000
-1.389992606215616	2.4075378160654	0.0000000000000000000000000000000000000
0.0000000000000000	00 0.00000000000	0000 30.0000000000000000
Fe P		
1 2		
Direct		
0.3333333429999996	0.66666666870000029	0.5000000000000000
0.6666666870000029	0.3333333429999996	0.5545296792859190