Superior mechanical flexibility, lattice thermal conductivity and electron mobility of the hexagonal honeycomb carbon nitride monolayer

Tian Zhang ^{†*}, Jia-He Lin[§], and Xiao Jia^{†,‡*}

†School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610066, China

‡ School of Mathematical Science, University of Electronic Science and Technology of China,

Chengdu 610054, China

§School of Science, Jimei University, Xiamen 361021, China

*e-mail:zhangt512@foxmail.com;xiaojia@sicnu.edu.cn

ABSTRACT: Nitrogen is the nearest neighbor element of carbon, and thus the hexagonal honeycomb carbon nitride monolayer (C_xN_y) consisted of a covalent network of carbon and nitrogen atoms can usually own attractive physical and chemical properties similar to those in graphene. Here, we systematically investigate the geometric structure, mechanical properties, thermal transport properties, and plasmon excitation of a new phase labeled C_3N_2 , and make a detailed comparison with other possible C_xN_y allotropes. All C_xN_y own the superhigh layer modulus and Young's modulus. But compared with others, the C_3N_2 exhibits its excellent mechanical flexibility, which can withstand relatively high critical strain up to 20% (18%) along X (Y) direction. Additionally, the C_3N_2 also own the excellent thermal and electronic transport properties with the super-high lattice thermal conductivity ~ 110.9 W/mK and electron mobility ~ 1617.52 cm²/V·s at 300 K. By performing the time-dependent density functional theory (TDDFT), we obtain optical absorptions of the C_3N_2 and C_3N , and meanwhile analyze their Fourier transforms of induced charge densities at some resonant frequencies. The main optical absorption peaks of the C_3N_2 nanostructure are located in ultraviolet region, and its plasmon peaks are far higher than those in the C_3N . Excellent mechanical and optical properties, the larger electronic band gap, and the higher electron mobility promote the C_3N_2 with great potential for application in nanoelectronics and optoelectronics. Keywords: Carbon nitride monolayers; Mechanical properties; Lattice thermal conductivity; Electron mobility; Plasmon excitation; Time-dependent density functional theory (T-

DDFT);

Table S1: Calculated effective masses m^* (m_0), average effective masses m_d (m_0), elastic modulus C_{2D} (eV/Å²), deformation energies E_l (eV), carrier mobilities μ (cm²/Vs) and relaxation time τ (10⁻¹⁴ s) for the C₃N₂ and C₃N at 300 K by performing PBE-GGA method.

	E_l (eV)	$C_{2D} (eV/Å^2)$	m* (m ₀)	$m_d (m_0)$	$\mu (\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s})$	$\tau (10^{-14} \text{ s})$
C_3N_2						
Hole	3.05	16.44	3.79	3.15	50.86	8.97
Electron	3.40	16.44	0.52	0.58	1617.52	52.63
C ₃ N						
Hole	5.35	26.69	0.55	0.74	785.74	32.62
Electron	5.24	26.69	0.72	0.77	605.24	25.97

Figure S1. Top and side views of the (a) the C_2N , (b) C_3N , (c) C_3N_4 , (d) C_4N_3 , (e) C_4N-1 , and (f) C_4N-1 structure.

Figure S2. The calculated forces per unit length (*F*) of the (a) C_3N_2 , (b) C_3N_4 , (c) C_2N , (d) C_3N , (e) C_4N_3 , and (f) C_4N-1 and C_4N-1 as a function of the η .

Figure S3. The Grüneisen parameters γ of the (a) C_3N_2 and (b) C_3N for all phonon branches.

Figure S4. The calculated phase space *P*3 of the (a) C_3N_2 and (b) C_3N for all phonon branches.

Figure S5. The calculated lattice thermal conductivities k_L of the (a) C_3N_2 and (b) C_3N for different numbers of q points along \vec{a}_1 and \vec{a}_2 directions at 300 K.

Figure S6. The calculated electronic band structures of the (a) C_3N_2 and (b) C_3N based on HSE06 method.

Figure S7. The band edges versus uniaxial strain for the C_3N_2 [(a) and (b)] and C_3N [(c) and (d)] based on PBE-GGA method.

Figure S8. The schematic of C_3N_2 -based field effect transistors (FET) device, with the drain, source, and back-gate electrodes.