Supplementary information

Strain-induced spin-gapless semiconductors and pure thermal spin-current in magnetic black arsenic-phosphorus monolayer

Yutian Ji,¹Xingyi Tan^{2,3}, Xiao-yu Yue,¹Yan Sun,¹Yiyan Wang,¹Hui Liang,¹Qiuju Li,⁴ Xuefeng Sun^{5, 1} and Dandan Wu¹

¹⁾Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China.

²⁾Department of Physics, Chongqing Three Gorges University, Chongqing, Wanzhou 404100, People's Republic of China.

³⁾School of Information Engineering, Hubei Minzu University, Hubei, Enshi 445000, People's Republic of China.

⁴⁾School of Physical and Materials Science, Anhui University, Hefei, Anhui 230601, People's Republic of China.

⁵⁾Department of Physics, Hefei National Laboratory for Physical Sciences at Microscale, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.

(*Electronic mail: <u>ddw@ahu.edu.cn</u> and <u>xfsun@ustc.edu.cn</u>)

Fig. S1 (a)-(c) The optimized bond lengths and bond angles of the pristine AsP monolayer, P- and As-adsorbed AsP nanosheets, respectively.

Table S1: The optimized lattice constants (a, b, c), three angles (α, β, γ) and the bond length (l) of P-Cl (As-Cl) for pristine AsP monolayer, P- and As-adsorbed AsP nanosheets, respectively.

	a (Å)	ł (Å)	ι (Å)	α (°C)	β (°C)	γ (°C)	<i>l</i> (Å)
Pristine AsP	4.787	6.934	9.792	90	90	90	
P-adsorbed AsP	4.593	6.996	9.997	89.957	90.885	89.980	2.194
As-adsorbed AsP	4.607	6.971	10.020	90.109	90.828	89.987	20285

Fig. S2 Three different spin configurations of ferromagnetic (FM) and antiferromagnetic states (AFM1 or AFM2) for P- and As-adsorbed AsP monolayer, respectively.

Table S2: The energies (in meV) of antiferromagnetic states (AFM1 and AFM2) compared with the ferromagnetic (FM) state (set as 0).

	FM	AFM1	AFM2
P-adsorbed AsP	0	27.5	6.2
As-adsorbed AsP	0	22.4	5.8

Fig. S3 The equivalent energies of the different coverages for Cl adatoms compared to P- and As-adsorbed monolayer with the 12.5% coverage, respectively.

Table S3: Binding energies of P- and As-adsorbed AsP monolayer, defined as $E_b = Es$ - $E_{AsP}-E_{Cl2}/2$, where Es, E_{AsP} and E_{Cl2} stand for the energies of AsP monolayer with one Cl adatom, pristine AsP monolayer and Cl₂ molecule, respectively.

	$E_b(eV)$	$E_{S}(eV)$	$E_{AsP}(eV)$	$E_{\rm Cl_2}({\rm eV})$
P-adsorbed AsP	-0.877	-41.793	-39.128	-3.575
As-adsorbed AsP	-0.720	-41.636	-39.128	-3.575

Fig. S4 (a) Three adsorption positions for AsP monolayer with the Cl adatom: top, hollow and bridge sites. (b) Band structures of AsP monolayer with the Cl adatom on bridge site.

Fig. S5 Monte Carlo simulations for the P- and As-adsorbed AsP monolayer: (a) magnetism (M) and (b) heat capacity (C_V) versus temperature. We use the Heisenberg model to describe the spin interaction and the related lattice Hamitonian can be expressed as follows:

$$H = -J_1 \sum_{\substack{\langle i,j \rangle \\ S_i, S_j = J_2}} S_i S_j - J_2 \sum_{\substack{\langle k,l \rangle \\ S_i = S_i}} S_k S_l$$

where S_i , S_j and S_k , S_l refer to the spin operators on the nearest and next nearestneighbour lattice points $\langle i,j \rangle$ and $\langle k,l \rangle$, respectively. J_l and J_2 stand for the nearest and next nearest-neighbour interaction energies, respectively, estimated by the energy difference between the ferromagnetic and anti-ferromagentic state shown in Table S2 and Fig. S2.

Fig. S6 (a) and (b) Band structures of the AsP monolayer with one P atom adsorbed by one fluorine (F) and one bromine (Br) atom, respectively. (c) and (d) Band structures of the AsP monolayer with one As atom adsorbed by one F and one Br atom, respectively.