Supplementary materials for

Multi-channel photodissociation dynamics of ${ }^{14} \mathbf{N}_{\mathbf{2}}$ in its $\boldsymbol{b}^{\boldsymbol{1} \boldsymbol{\Sigma}+\mathbf{u}(\mathbf{v}=\mathbf{2 0}) \text { state }, ~}$

Pan Jiang ${ }^{1,2}$, Liya Lu ${ }^{1,2}$, Min Liu ${ }^{1,2}$, Hong Gao ${ }^{1,2^{*}}$

${ }^{1}$ Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
${ }^{2}$ University of Chinese Academy of Sciences, Beijing 100049, China

* Email address: honggao2017@iccas.ac.cn (Hong Gao)

Figure $\mathbf{S 1}$ PHOFEX spectrum by detecting $\mathrm{N}\left({ }^{2} \mathrm{D}_{3 / 2}\right)$ for the $b^{\prime}{ }^{1} \mathrm{\Sigma}+\mathrm{u}(\mathrm{v}=20)$ state of ${ }^{14} \mathrm{~N}_{2}$. The intensities of the spectrum are not calibrated with the VUV laser intensity.

Figure S2 PHOFEX spectra by detecting $\mathrm{N}\left({ }^{2} \mathrm{D}_{5 / 2}\right)$ (blue curve) and $\mathrm{N}\left({ }^{2} \mathrm{D}_{3 / 2}\right)$ (red curve) for the $b^{\prime}{ }^{1} \Sigma+u(v=20)$ state of ${ }^{14} \mathrm{~N}_{2}$ by using a thermalized molecular beam (see main text for details). The intensities of the spectra are not calibrated with the VUV laser intensity. The disappearance of the rotational transitions between $116930 \mathrm{~cm}^{-1}$ and $117000 \mathrm{~cm}^{-1}$ is mainly due to relatively weak VUV intensity in this range.

Figure S3 Relative branching ratios $\mathrm{BR}\left({ }^{2} \mathrm{D}_{5 / 2}\right)$ measured by detecting $\mathrm{N}\left({ }^{2} \mathrm{D}_{5 / 2}\right)$. The results are plotted versus $J(J+1)$, and J is rotational quantum number of the upper level. The error bars represent the standard deviations (1σ) of 3-6 independent measurements.

Figure S4 Relative branching ratios $\operatorname{BR}\left({ }^{2} \mathrm{D}_{3 / 2}\right)$ measured by detecting $\mathrm{N}\left({ }^{2} \mathrm{D}_{3 / 2}\right)$. The results are plotted versus $J(J+1)$, and J is rotational quantum number of the upper level. The error bars represent the standard deviations (1σ) of 3-6 independent measurements.

Figure S5 Measured predissociation linewidths of the $b^{\prime}{ }^{1} \Sigma+u(v=20)$ state of ${ }^{14} \mathrm{~N}_{2}$ from Refs. 21 and 27.

Figure S6 PPRCs of channel $N\left({ }^{2} \mathrm{D}_{32,5 / 2}\right)+\mathrm{N}\left({ }^{2} \mathrm{D}_{32,5 / 5}\right)$. Black squares are values from Figure 6 in main text. Red dots represent values by subtracting PPRCs of channels $N\left({ }^{4} \mathrm{~S}\right)+\mathrm{N}\left({ }^{2} \mathrm{D}_{3 / 2,5 / 2}\right)$ and $\mathrm{N}\left({ }^{4} \mathrm{~S}\right)+\mathrm{N}\left({ }^{2} \mathrm{P}_{1 / 2,3 / 2}\right)$ from TPRCs by assuming that PPRCs of $\mathrm{N}\left({ }^{4} \mathrm{~S}\right)+\mathrm{N}\left({ }^{2} \mathrm{D}_{3 / 2,5 / 2}\right)$ and $\mathrm{N}\left({ }^{4} \mathrm{~S}\right)+\mathrm{N}\left({ }^{(} \mathrm{P}_{1 / 2,3 / 2}\right)$ are independent of J. The error bars are inherited from TPRCs only. The straight lines are linear fittings of the values for $J=1-5, J=1-4, J=0-5$ and $J=0-5,14-21$ respectively.

Table S1 Relative branching ratios $\operatorname{BR}\left({ }^{2} \mathrm{D}_{5 / 2}\right), \operatorname{BR}\left({ }^{2} \mathrm{D}_{3 / 2}\right)$ and $\mathrm{BR}\left({ }^{4} \mathrm{~S}\right)$ for the $b^{\prime}{ }^{1} \Sigma+\mathrm{u}(v=20)$ state of ${ }^{14} \mathrm{~N}_{2}$ measured by detecting $\mathrm{N}\left({ }^{2} \mathrm{D}_{5 / 2}\right), \mathrm{N}\left({ }^{2} \mathrm{D}_{3 / 2}\right)$ and $\mathrm{N}\left({ }^{4} \mathrm{~S}\right)$ respectively. The standard deviation (1σ) is calculated from a total of 3-6 independent measurements.

VUV $\left(\mathrm{cm}^{-1}\right)$	Rotational transition	$\mathrm{BR}\left({ }^{2} \mathrm{D}_{5 / 2}\right)$		$\mathrm{BR}\left({ }^{(} \mathrm{D}_{3 / 2}\right)$		$\mathrm{BR}\left({ }^{4} \mathrm{~S}\right)$	
		16	$\%$	1σ	$\%$	1σ	
117207.2	$\mathrm{R}(0,1)$	95.6	1.4	86.6	2.1	94.4	0.2
117205.7	$\mathrm{R}(2)$	98.2	0.7	95.2	0.1	93.4	1.4
117202.3	$\mathrm{R}(3)$	99.0	0.6	97.5	0.7	94.3	0.5
117200.9	$\mathrm{P}(1)$	93.3	0.3	89.9	1.1	93.7	1.3
117197.0	$\mathrm{R}(4)$	99.2	0.6	98.8	0.4	95.2	0.2
117195.1	$\mathrm{P}(2)$	94.3	1.0	89.9	1.1	94.3	0.4
117189.9	$\mathrm{R}(5)$	100.3	0.6	99.2	0.2	$-\square$	$-\square$
117187.4	$\mathrm{P}(3)$	96.2	0.6	93.1	0.7	95.2	0.9
117181.0	$\mathrm{R}(6)$	99.6	0.3	99.8	0.1	$-\square$	$-\square$
117177.9	$\mathrm{P}(4)$	97.9	0.7	94.9	0.9	94.7	0.3
117170.2	$\mathrm{R}(7)$	100.0	0.2	100.0	0.0	$-\square$	$-\square$
117166.5	$\mathrm{P}(5)$	98.8	0.2	96.7	0.8	94.8	0.2
117157.5	$\mathrm{R}(8)$	99.9	0.3	100.5	0.9	$-\square$	$-\square$
117153.3	$\mathrm{P}(6)$	99.4	0.2	98.5	0.6	95.3	0.6
117143.0	$\mathrm{R}(9)$	100.4	0.4	100.4	1.0	$-\square$	$-\square$
117138.2	$\mathrm{P}(7)$	99.7	0.0	99.6	0.1	$-\square$	$-\square$
117126.6	$\mathrm{R}(10)$	100.0	0.1	100.4	0.7	$-\square$	$-\square$
117121.3	$\mathrm{P}(8)$	99.7	0.1	99.6	0.1	$-\square$	$-\square$
117108.4	$\mathrm{R}(11)$	99.3	2.5	100.0	0.7	$-\square$	$-\square$
117102.5	$\mathrm{P}(9)$	100.8	1.2	99.6	0.7	$-\square$	$-\square$
117088.3	$\mathrm{R}(12)$	100.0	0.4	100.1	0.3	$-\square$	$-\square$
117081.9	$\mathrm{P}(10)$	99.9	0.2	100.1	0.2	$-\square$	$-\square$
117066.4	$\mathrm{R}(13)$	100.4	2.2	100.3	0.2	$-\square$	$-\square$
117059.4	$\mathrm{P}(11)$	99.9	1.4	100.2	1.8	$-\square$	$-\square$

