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METHODS

Details of All-atom molecular dynamics simulations

S1. ssDNA

The single-stranded DNA (ssDNA) studied here is polyadenylic acid with 8 monomers of 

thymine (poly dT8), and the cartoon conformation presents in Fig. 1b (blue). The starting 

configuration for the MD study is generated by the x3dna module (http://web.x3dna.org). The 

GROMACS (version 2016.3) tools package 1 was used in conjunction with the AMBER99SB force 

field 2 to model ssDNA dynamics. Poly dT8 was solvated in a periodic box of dimensions 5×5×5 

nm3. This contained approximately 3,950 TIP3P models 3 water molecules with the appropriate 

amount of Na+ counterions to neutralize the negative phosphate charges, and the total system 

contains about 12,000 atoms. Periodic boundary conditions (PBC) were applied in all dimensions 

with long-range electrostatic interactions characterized by Particle Mesh Ewald (PME) method 4,5. 

The pressure/temperature coupling was performed using the Parrinello-Rahman algorithm 6 and 

Nosé-Hoover methods 7, respectively. MD simulation was carried out using the leap-frog algorithm 

for integrating Newton's equation of motion for 100 ns at constant temperature (300 K) and pressure 

(1 bar). Van der Waals interaction was truncated at 1.2 nm, with the LJ potential switched to zero 

gradually at 1.0 nm 5. The short-range electrostatic interactions was truncated at rc = 12 Å 4,5. 

Following that, a 100 ns long simulation was produced with a time step of 2 fs integration. The 

coordinates of the system coordinates were saved at every 1 ps, and this time resolution is commonly 

used for molecular dynamics simulations of proteins 8-13. 

S2. dsDNA

Here, we carried out MD simulations on the 11 base-pairs B-form double-stranded DNA 

(dsDNA) with the sequential sequence of GCACTGCTAGG, and its radius of gyration (Rg) is ~1.2 

nm. A three-dimensional cartoon structure of studied dsDNA visualized in Fig. 1b (green), and its 

initial configuration was generated by the x3dna module (http://web.x3dna.org). One hundred 

independent 100 ns long MD simulations were carried out by the simulation engine GROMACS 

(Version 2016.3) 1 and the AMBER99SB force field for nucleic acid 14. A dsDNA was solvated in a 

periodic box of dimensions 6×6×6 nm3. The simulated system comprised a small dsDNA and about 

6,700 TIP3P water molecules 3, together with the appropriate amount of sodium counterions to 

balance the negative phosphate charges, leading to this total system size of about 20,000 atoms. The 

temperature was set to be 300K using the Nosé-Hoover methods 7. The pressure coupling was kept 
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constant using the Parrinello-Rahman algorithm 6 to the reference pressure one atmospheric (1 atm). 

Van der Waals forces were evaluated using a 10-12 Å switching scheme. Long-range electrostatic 

forces were computed using the particle-Mesh Ewald (PME) methods, 1.5 Å Fourier-space grid, and 

a 12 Å cut-off for the real-space Coulomb interaction 4,5. The system coordinates were written into 

the trajectory file every 1 ps and integrated every 2 fs. We used the end-to-end distance of dsDNA to 

characterize its internal dynamics.

S3. KRAS

 Human KRAS (PDB Code: 3GFT) is a single domain GTPase protein involved in the 

RAS/MAPK signaling pathway and is a tumor suppressor in pharmaceutics. The molecular weight of 

KRAS is roughly 21 kD with 167 amino acids, and its Rg is ~1.5 nm. Here, KRAS is tested as a 

model for studying the structural dynamics of small, single-domain proteins. To characterize KRAS 

internal dynamics, we calculate the distance between two equal-size segments, i.e., residues 1-76 and 

77-167. One hundred independent 100 ns simulations (using the same initial coordinates but different 

velocities) were produced in the NPT ensemble (constant number of particles, pressure, and 

temperature) using the MD engine GROMACS (version 2016.3) 1 with the CHARMM36 force field 

on the in-house supercomputing cluster. Volume of the simulated box is 7×7×7.5 nm3. We used the 

Berendsen thermostat method 7 to maintain the simulation temperature at 300K and Parrinello-

Rahman barostat 6 coupling to keep the pressure at reference (1 bar). Energy minimization of 50,000 

steps was initially used, and then NVT and NPT ensembles were performed for 10ns each. The 

TIP3P explicit water model was chosen 3, and sodium ions were added to the system to neutralize the 

total charge. PME algorithms were used to calculate long-range electrostatic interactions 4,5, with a 

cutoff of 1 nm. The short-range van der Waals (VdW) interactions were treated using a cutoff of 10 

Å. For all the 100 ns simulations, system coordinates were saved every 1 ps, and a time step of 2 fs 

was used for integration MD. 

S4. PGK

A typical cartoon structure of yeast enzyme phosphoglycerate kinase (PGK) presents in Fig. 

1b, which contains N- and C-terminal domains (residues 1-185, residues 200-389) linked by a helix 

hinge (residues 186-199 & 390-415). This three-domain protein's molecular weight is about 45 kD 

with 415 residues (PDB ID: 3PGK) 15. One hundred 100 ns long MD simulations were performed to 

examine its dynamics. The simulation started from the initial crystal configuration, and the MD 
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software GROMACS (Version 2016.3) was used 1, as it is the most used tool in the study of 

biomolecular dynamics. The force field used for protein was the CHARMM27 force field on a local 

computing cluster 16,17. PGK, which was placed at least 1.0 nm from the box edge, was simulated 

inside cubic cell center (8×7.5×10 nm3) using periodic boundary conditions (PBC), leading to this 

total system size of about 101000 atoms, ~95000 TIP3P water molecules filled into the box 3. In the 

isothermal−isobaric (NPT) ensemble using a Nosé-Hoover thermostat algorithm 7 at 300K and the 

pressure to 1 bar using Parrinello-Rahman barostat(12). The non-bonded Van der Waals (VdW) 

interaction was truncated at 1.2 nm, at which the VdW interactions reach zero with the LJ potential 

gradually at 1.0 nm. The Coulomb cut-off distance of short-range electrostatic interactions was rc = 

12 Å. For a distance beyond 1.2 nm, the Particle Mesh Ewald (PME) method 4,5 was used. The VdW 

interactions were treated using a cut-off of 1 nm. The simulation coordinates of the system were 

recorded every 1 ps with at least 100 ps equilibration time.

S5. SHP2

The crystal structure of non-receptor protein tyrosine phosphatase (PTP) SHP2 with E76A 

mutation can be found in the PDB data bank file 5XZR 18. The molecular mass of this multi-domain 

phosphatase is about 64.24 kD with ~530 residues, and the corresponding Rg is about 2.6 nm. All 

SHP2 simulations were carried out using GROMACS (Version 2016.3) with the CHARMM27 force 

field for this enzyme 16,17. The system was solvated in a rectangular water box (edge lengths 

8.5×9.5×10.5 nm3) with periodic boundary conditions (PBC), leading to a total system size of about 

83,000 atoms with a single SHP2 protein molecule and ~25000 water molecules. 77 Na+ and Cl- 

ions were added to neutralize the total charge. All simulations were carried out using the TIP3P 

water model 3 in the NVT ensemble using a Nośe-Hoover thermostat at 300 K 19. The pressure 

coupling was performed using the Parrinello-Rahman algorithm with a coupling time of τ = 2 ps 6. 

Van der Waals interactions (VdW) were truncated at 1.0 nm, with the LJ potential switched to zero 

gradually from 1.0 nm to 1.2 nm. The short-range electrostatic interactions within the cut-off 

distance of rc = 10 Å were treated as Coulombic 4,5. All bonds involving hydrogen atoms were 

constrained with the LINCS algorithm to allow a time step of 2 fs 20. The system was first energy 

minimized using steepest descent steps with a maximum force of 10.0 kJ·mol-1·nm-1 and a maximum 

of 5×106 steps, then equilibrated in the NVT ensemble at 300 K for 10 ns, and then in the NPT 

ensemble at p =1 bar for 10 ns. Then using the final structure of the protein molecule obtained in the 
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NPT equilibration as the starting structure, we performed 100 independent MD simulations with each 

being 100 ns long. 

S6. SNAP-25

Symbiosomal nerve-associated protein 25 isoform A (SNAP-25), encoding by the SNAP-25 

gene in humans, consists of N- and C-terminal α-helix connected by a small random coil linker 21. 

The molecular weight of this intrinsically disordered protein (IDP) SNAP-25 is ~23 kD with a 

primary sequence length of 204 residues, and its radius of gyration (Rg) is ~3.3 nm. SNAP-25, 

together with syntaxin and synaptobrevin, composes an exceptionally stable four-helix bundle, 

SNARE complex, an intracellular membrane fusion protein, by pulling the two membranes tightly 

together to exert the force required for fusion 22,23. Therefore, the dynamics of SNAP-25 protein is 

considered to be tremendously crucial for intracellular trafficking and vesicle disassembling. The 

three-dimensional structure of this disordered protein SNAP-25 (see Fig. 1d) was generated by 

homology modeling methods 24, based on the native amino acids sequence25. This building structure 

shows 98.53% sequence identity with template protein (a single chain in the PDB ID 6MDM). We 

performed one hundred 100 ns long trajectory for statistical analysis. All the simulations were carried 

by using the MD engine GROMACS (version 2016.3) 1 with the specific IDP force field 26 for the 

protein on a local computing cluster. The constant temperature was set to 300 K using a modified 

Berendsen thermostat 7 and the pressure to 1 bar using Parrinello-Rahman barostat 6. The protein is 

centered in a rectangular water box (~ 6.5×6.5×14.2 nm3) using the TIP3P explicit water model 3 and 

placed at least 1.0 nm from the box edge. The whole system contains slightly over 58000 atoms and 

14 sodium ions to neutralize the total charge. Electrostatic interactions were treated with a cut-off of 

1 nm, beyond which the PME method was used 4,5. The VdW interactions were treated using a cut-

off of 1 nm. For all the simulations, system coordinates were written into the trajectory file every 1 

ps. We also performed ensemble simulations with the CHARMM36 force field in SNAP-25. Similar 

results (i.e., aging and non-ergodicity) are being observed.
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Supplementary Notes

S7: Aging examination for different models

We also performed control numerical simulations on classical Brownian motion (BM), fractal 

Brownian motion (FBM, with a Hurst exponent of 0.3), continuous-time random walk (CTRW), and 

three different noise strengths CTRW to understand the aging dynamics. We simulated 100 

independent trajectories to ensure efficient statistics, and each with 10,000 steps for these models, 

i.e., the same amount of data compared with simulations for each dataset of the molecule. As 

displayed in Fig. S1, the time-ensemble-averaged MSD (TEA-MSD) of ergodic Brownian motion or 

fractal Brownian motion scale linearly with observation time T, and converge during long 

observations, indicating the equivalence for short-time measurements and long-time observations. As 

expected, no aging is observed in BM and FBM (Figs. S1A and S1B); its time-averaged MSD is 

independent of observation time T, demonstrated by many theoretical works 27,28. In sharp contrast, 

the random walk caused by trapping events (assuming the transition occurs with a scale-free trapping 

time distribution P(τ) ~ τ-1.5) shows apparent aging behaviors (Fig. S1C). The TEA-MSD display 

power-law decay for different lag-times Δ, consistent with the analytical result of CTRW 27,28. In 

other words, the effective mean waiting time was not constant but increased with the observation 

time, giving rise to aging dynamics 27-30. 

A careful comparison between the MD-derived results (Fig. 2f) and non-ergodic CTRW 

subdiffusion from numerical simulation (Fig. S1C) shows some qualitative differences. Firstly, the 

decay of TEA-MSD over T at different values of Δ in CTRW is parallel to each other in the double 

logarithmic scale (Fig. S1C). In contrast, the MD-derived TEA-MSD among different lag-times Δ is 

gradually reduced upon the increase of T (Fig. 2f, main text). The difference results from the fact that 

each state in the CTRW is static, but in protein, it involves a group of similar conformations with 

slight differences due to the thermal fluctuation, i.e., one conformational state coupled with a small 

amplitude of the noise. Here, we modified bare CTRW by assuming Ornstein-Uhlenbeck noise 

occurring when trapping in one state 31, where the amplitude of the noise is controlled by a noise 

strength parameter (η). After such treatment, the numerical results (Figs. S1E) are in much better 

agreement with these derived directly from MD observed (Fig. 1f). Thus, the noisy CTRW model 

indeed predicts that the difference of TEA-MSD at different lag times Δ is reduced upon increasing 

T. OU noise subordinated on broadly distributed trapping events dominated CTRW show closest 

results (Fig. S1E). Furthermore, adding more significant noise (Fig. S4F, η=0.5) to non-ergodic 

CTRW, no aging is observed and ergodic 31. 
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Supplementary Figures

Figure S1 | The aging plots obtained from the numerical simulation of different models. The 

aging plot of time-ensemble-averaged MSD (TEA-MSD) derived from numerical simulation of 

Brownian motion (A), and fractal Brownian motion (B). (C) TEA-MSD as a function of T obtained 

from the continuous-time random walk (CTRW). (D-F) Three different simulated noisy CTRW by 

addition Ornstein Uhlenbeck noise to each state, the respective noise strengths (η) are indicated. All 

dashed lines represent power-law fits and guide the aging exponent of TEA-MSD vs. T. 
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Fig. S2 | Using end-to-end distance to characterize ergodicity and aging dynamics in all 

proteins. The ensemble-averaged MSD (EA-MSD, solid lines) vs. time-ensemble averaged MSD 

(TA-MSD, marker) for the KRAS (A), PGK (B), SHP2 (C), and SNAP-25 (D). The overlap between 

EA-MSD and TA-MSD indicates ergodic motion in KRAS, revealing no appreciable non-ergodicity. 

While the gap between TA-MSD and EA-MSD confirms the ergodic breaking on the MD time 

window (B-D). (E-H) The aging TA-MSD are plotted against observation time, T (i.e., the time used 

in the moving average), with different fixed lag times Δ. The dashed lines in (E-H) guide the trend of 

power-law decay, and suggest non-aging (E) and aging (F-H) behaviors at the associated 

biomolecules. Although the sub-diffusive and aging power-law exponents are slightly different from 

Fig. 1 (main text), the qualitative results, i.e., the presence of non-ergodicity and aging in larger 

proteins, are similar to the manuscript. 
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Supplementary Tables 

Table S1 | The distance x(t) used to characterize the internal dynamics of six biological 

molecules. The reasons why we chose these different distances x(t) for respective proteins is 

described below. For the distance x(t) of four protein cases (KRAS, PGK, SHP2, SNAP-25), we use 

the same examination of Ref. 8,32,33. More specifically, to examine the overall intra-domain structural 

dynamics of KRAS like the inter-domain motions in the globular proteins, we divided the protein 

into two nearly equal-weighted segments, i.e., residues 1-76 and 77-167, calculated the center-of-

mass distance from the MD trajectories, and compared the results to the inter-domain dynamics of 

PGK and SHP2. The PGK distance x(t) is selected as the center of mass distance between two fist-

like N- and C-domains (i.e., residues 1-185 and 200-389), which is functionally important 8. Since 

the substrate covalently binds to the N- and C-domain to perform its catalytic function. The SHP2 

distance x(t) is between two selected residues (Q87 and K266) located in the N-SH2 and PTP 

domains. As previously reported 32, the relative motion between the N-SH2 and PTP domains is 

essential for its function and shows crucial open and close conformational change. The SNAP-25 

distance x(t) is between two selected residues (Q20 and I139), which have demonstrated 

conformational switching behavior and structural heterogeneity as recently  reported 33. 

Molecules Distance, x(t)

ssDNA End-to-end distance

dsDNA End-to-end distance

KRAS Center of mass distance between residues 1-76 and 77-167

PGK Center of mass distance between residues 1-185 and 200-389

SHP2 Center of mass distance between residues 87 and 266

SNAP-25 Center of mass distance between residues 20 and 139

Table S2 | The subdiffusive exponents α for different molecules. The αe and αt represent the 

ensemble and time values of the subdiffusive exponent, respectively. We estimated α using simple 

power-law scaling to fit the two type MSD curves (Figs. 1c-d) at times ranging from 1 - 100 ps. 

ssDNA dsDNA KRAS PGK SHP2 SNAP-25

αe 0.69 0.65 0.22 0.95 0.38 0.65

αt 0.68 0.62 0.22 0.59 0.27 0.41
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