Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Electronic Supporting Information

Microsolvation of H_2O^+ , H_3O^+ , and $CH_3OH_2^+$ by He in a cryogenic ion trap: Structure of solvation shells

David Müller and Otto Dopfer*

Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany

* Corresponding author: dopfer@physik.tu-berlin.de

Table S1. NBO charge distribution on the He atoms in X^+He_n clusters evaluated at the CCSD(T)/aug-cc-pVTZ level (in *e*).

n	H_2O^+	H ₃ O ⁺	CH₃OH₂ ⁺
0 ^a	0.54504	0.58759	0.56127
1 (H)	0.00913	0.00524	0.00278
1 (p)	0.00120		
2 (2H)	0.00866	0.00494	0.00273
	0.00866	0.00494	0.00273
2 (2p)	0.00120		
	0.00120		
3	0.00843	0.00478	
	0.00843	0.00478	
	0.00098	0.00478	
4	0.00821	0.00460	
	0.00821	0.00452	
	0.00097	0.00472	
	0.00097	0.00037	
5	0.00795	0.00439	
	0.00795	0.00437	
	0.00104	0.00443	
	0.00104	0.00037	
	0.00027	0.00037	
6		0.00432	
		0.00432	
		0.00432	
		0.00034	
		0.00034	
		0.00034	
1	i i		1

^a Partial charge on the equivalent OH protons.

Table S2. Scaled vibrational OH stretch and bend frequencies of $H_2O^+He_n$ calculated at the CCSD/aug-ccpVTZ level (in cm⁻¹).^a

п	v ₁	v ₃	v ₂
0	3210.7 (115)	3261.0 (447)	1408.5 (166)
	3212.86	3259.04	1408.4
1 (H)	3184.8 (308)	3253.0 (412)	1412.1 (152)
	3198.0 ^b	3253.9 ^b	
1 (p)	3214.9 (112)	3265.3 (437)	1411.2 (162)
2 (2H)	3189.7 (177)	3220.3 (701)	1415.4 (139)
2 (2p)	3219.2 (108)	3269.5 (426)	1413.7 (158)
3	3194.8 (172)	3225.3 (682)	1418.3 (137)
4	3200.0 (167)	3230.2 (663)	1420.8 (134)
5	3204.5 (162)	3233.5 (644)	1417.7 (146)

^a IR intensities in km/mol are listed in parentheses. Scaling factor of 0.9442 and 0.9492 for $v_{1/3}$ and v_2 . Experimental values are listed in italics. ^b B tunnelling component of K_a = 0-0 subband.

Table S3. Scaled vibrational OH stretch frequencies of $H_3O^+He_n$ calculated at the CCSD/aug-cc-pVTZ level (in cm⁻¹).^a

n	v ₁	v ₃ (1)	v ₃ (2)
0	3438.7 (32)	3529.1 (459)	3529.1 (459)
	3440	3528	3528
1	3433.7 (75)	3512.2 (548)	3535.1 (451)
2	3433.0 (63)	3504.2 (644)	3530.7 (484)
3	3434.3 (43)	3511.4 (630)	3511.5 (630)
4	3437.1 (42)	3513.9 (615)	3514.6 (624)
5	3439.7 (41)	3516.4 (607)	3517.6 (610)
6	3436.2 (40)	3512.6 (601)	3512.6 (601)

^a IR intensities in km/mol are listed in parentheses. Scaling factor of 0.9505. Experimental values (averaged tunnelling components) are listed in italics. The v_3 mode has two components, which are degenerate for *n*=3 and 6.

Table S4. Scaled vibrational OH stretch frequencies of $CH_3OH_2^+He_n$ calculated at the CCSD/aug-cc-pVTZ level (in cm⁻¹).^a

n	V _{OH} ^s	VOH
0	3510.0 (198)	3584.9 (320)
1	3508.3 (236)	3581.2 (370)
	3504	3571
2	3508.4 (252)	3577.1 (439)

^a IR intensities in km/mol are listed in parentheses. Scaling factor of 0.9505. Experimental values are listed in italics.