SUPPLEMENTARY INFORMATION

Structures and Chemical Bonding of Boron-Based B₁₂O and B₁₁Au Clusters. A Counterexample in Boronyl Chemistry

Peng-Fei Li and Hua-Jin Zhai*

Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

*E-mail: hj.zhai@sxu.edu.cn

Table S1.Cartesian coordinates for the global-minimum (GM) structures of $B_{12}O(1, C_1, {}^{1}A)$ and $B_{11}Au(5, C_s, {}^{1}A')$ clusters at the B3LYP/B/O/6-311+G(d)/Au/Stuttgart_rsc_1997_ecp+2f1g level.

- **Table S2.**Calculated nucleus-independent chemical shifts (NICSs) of $B_{12}O(1)$, $B_{11}Au(5)$,
and B_{12} clusters, as well as those of benzene molecule, at the B3LYP/6-311+G(d)
(with the Stuttgart_rsc_1997_ecp+2f1g basis set for Au) level.
- Figure S1. Alternative optimized low-lying structures of B₁₂O cluster. Relative energies are shown in kcal mol⁻¹ at the B3LYP/6-311+G(d) level (without parenthesis). Also shown are energetics data for top 5 lowest-energy isomers at the PBE0/6-311+G(d) level (in parentheses), at the B3LYP/cc-pvtz and B3LYP/aug-cc-pvtz levels (in curly brackets), and at the single-point CCSD(T)/cc-pvtz//B3LYP/cc-pvtz level (in square brackets). All energies at the density-functional theory (DFT) levels have been corrected for zero-point energies (ZPEs).

- Figure S2. Alternative optimized low-lying structures of B₁₂O⁻ cluster. Relative energies are shown in kcal mol⁻¹ at the B3LYP/6-311+G(d) level (without parenthesis). Also shown are energetics data for top 5 lowest-energy isomers at the PBE0/6-311+G(d) level (in parentheses), at the B3LYP/cc-pvtz and B3LYP/aug-cc-pvtz levels (in curly brackets), and at the single-point CCSD(T)/cc-pvtz//B3LYP/cc-pvtz level (in square brackets). All energies at the DFT levels have been corrected for ZPEs.
- Figure S3. Alternative optimized low-lying structures of B₁₁Au cluster. Relative energies are shown in kcal mol⁻¹ at the B3LYP/B/6-311+G(d)/Au/Stuttgart level (without parentheses). Also shown are energetics data for top 4 lowest-energy isomers at the PBE0/B/6-311+G(d)/Au/Stuttgart level (in parentheses), at the B3LYP/B/cc-pvtz/Au/cc-pvtz-pp and B3LYP/B/aug-cc-pvtz/Au/Stuttgart levels (in curly brackets), and at the single-point CCSD(T)/cc-pvtz//B3LYP/cc-pvtz (cc-pvtz-pp for Au) level (in square brackets). Here the term "Stuttgart" stands for Stuttgart_rsc_1997_ecp+2f1g. All energies at the DFT levels have been corrected for ZPEs.
- Figure S4. Alternative optimized low-lying structures of B₁₁Au⁻ cluster. Relative energies are shown in kcal mol⁻¹ at the B3LYP/B/6-311+G(d)/Au/Stuttgart level (without parentheses). Also shown are energetics data for top 4 lowest-energy isomers at the PBE0/B/6-311+G(d)/Au/Stuttgart level (in parentheses), at the B3LYP/B/cc-pvtz/Au/cc-pvtz-pp and B3LYP/B/aug-cc-pvtz/Au/Stuttgart levels (in curly brackets), and at the single-point CCSD(T)/cc-pvtz//B3LYP/cc-pvtz (cc-pvtz-pp for Au) level (in square brackets). Here the term "Stuttgart" stands for Stuttgart_rsc_1997_ecp+2f1g. All energies at the DFT levels have been corrected for ZPEs.
- **Figure S5.** A primitive bonding scheme for delocalized σ framework in B₁₁Au (**5**) cluster from the adaptive natural density partitioning (AdNDP) analysis. Occupation numbers (ONs) are shown. In this scheme, the σ framework is islanded as three-center

two-electron (3c-2e) bonds. Its refined version is presented in Figure 8(d), in which the islands are expanded to 4c-2e σ bonds with moderately improved ON values.

Figure S6. Simulated photoelectron spectra of (a) $B_{12}O^-(3)$ and (b) $B_{11}Au^-(7)$ clusters at the time-dependent PBE0/6-311+G(d) (Stuttgart_rsc_1997_ecp+2f1g for Au) level, in comparison with that of (c) B_{12}^- cluster. The simulations were done by fitting the calculated vertical detachment energies (VDEs) with unit-area Gaussian functions of 0.04 eV half-width.

Table S1. Cartesian coordinates for the global-minimum (GM) structures of $B_{12}O(1, C_1, {}^1A)$ and $B_{11}Au(5, C_s, {}^1A')$ clusters at the B3LYP/B/O/6-311+G(d)/Au/Stuttgart_
rsc_1997_ecp+2f1g level.

 $B_{12}O(1, C_1, {}^{1}A)$

В	-1.29648500	-0.23696500	0.26746900
В	0.28036100	-0.73495400	0.38481100
В	-2.39523100	-1.36974800	-0.18444300
В	0.71715200	-2.23506300	-0.07567600
В	1.85392500	-1.20479700	-0.06917200
В	0.01848700	0.89031300	0.33710000
В	-1.90068800	1.40531500	-0.06321800
В	-0.61076600	2.37606600	-0.10925200
В	-2.82184500	0.11409700	-0.14768400
В	1.78334400	0.90291800	-0.01293000
В	-0.86819500	-1.95177000	-0.03735500
В	0.91923700	2.21410600	-0.08003400
0	2.70044100	-0.10594900	-0.13100900

 $B_{11}Au(5, C_s, {}^{1}A')$

В	1.31560600	-0.44088600	0.00000000
В	3.95134700	-1.29708500	0.00000000
В	4.74996500	0.03270300	0.00000000
В	4.31438100	1.49250800	0.00000000
В	3.15399200	2.51663900	0.00000000
В	1.65514900	2.91933200	0.00000000
В	0.30479400	2.21027300	0.00000000
В	1.60693900	1.19931200	0.00000000

В	3.01417100	0.15840200	0.00000000
В	0.00000000	0.62816800	0.00000000
В	2.42916000	-1.50673400	0.00000000
Au	-1.67693100	-0.50079900	0.00000000

Table S2. Calculated nucleus-independent chemical shifts (NICSs) of B₁₂O (1), B₁₁Au (5), and B₁₂ clusters, as well as those of benzene molecule, at the B3LYP/6-311+G(d) (with the Stuttgart_rsc_1997_ecp+2f1g basis set for Au) level.

Species	NICS (ppm)	NICS _{zz} (ppm)
B ₁₂ O (1) ^a	-10.09	-29.10
$B_{11}Au (5)^{b}$	-18.80	-50.46
B ₁₂ ^c	-12.77	-43.19
$C_6H_6^d$	-10.14	-28.99

 $^{\rm a}$ Calculated at 1 Å above the center of inner B3 triangular ring.

^b Calculated at 1 Å above the center of 11 boron atoms.

^c Calculated at 1 Å above the center of inner B₃ triangular ring.

^d Calculated at 1 Å above the ring center.

Figure S1. Alternative optimized low-lying structures of B₁₂O cluster. Relative energies are shown in kcal mol⁻¹ at the B3LYP/6-311+G(d) level (without parenthesis). Also shown are energetics data for top 5 lowest-energy isomers at the PBE0/6-311+G(d) level (in parentheses), at the B3LYP/cc-pvtz and B3LYP/aug-cc-pvtz levels (in curly brackets), and at the single-point CCSD(T)/cc-pvtz//B3LYP/cc-pvtz level (in square brackets). All energies at the density-functional theory (DFT) levels have been corrected for zero-point energies (ZPEs).

Figure S2. Alternative optimized low-lying structures of B₁₂O⁻ cluster. Relative energies are shown in kcal mol⁻¹ at the B3LYP/6-311+G(d) level (without parenthesis). Also shown are energetics data for top 5 lowest-energy isomers at the PBE0/6-311+G(d) level (in parentheses), at the B3LYP/cc-pvtz and B3LYP/aug-cc-pvtz levels (in curly brackets), and at the single-point CCSD(T)/cc-pvtz//B3LYP/cc-pvtz level (in square brackets). All energies at the DFT levels have been corrected for ZPEs.

Figure S3. Alternative optimized low-lying structures of B₁₁Au cluster. Relative energies are shown in kcal mol⁻¹ at the B3LYP/B/6-311+G(d)/Au/Stuttgart level (without parentheses). Also shown are energetics data for top 4 lowest-energy isomers at the PBE0/B/6-311+G(d)/Au/Stuttgart level (in parentheses), at the B3LYP/B/cc-pvtz/Au/cc-pvtz-pp and B3LYP/B/aug-cc-pvtz/Au/Stuttgart levels (in curly brackets), and at the single-point CCSD(T)/cc-pvtz/B3LYP/cc-pvtz (cc-pvtz-pp for Au) level (in square brackets). Here the term "Stuttgart" stands for Stuttgart_rsc_1997_ecp+2f1g. All energies at the DFT levels have been corrected for ZPEs.

Figure S4. Alternative optimized low-lying structures of B₁₁Au⁻ cluster. Relative energies are shown in kcal mol⁻¹ at the B3LYP/B/6-311+G(d)/Au/Stuttgart level (without parentheses). Also shown are energetics data for top 4 lowest-energy isomers at the PBE0/B/6-311+G(d)/Au/Stuttgart level (in parentheses), at the B3LYP/B/cc-pvtz/Au/cc-pvtz-pp and B3LYP/B/aug-cc-pvtz/Au/Stuttgart levels (in curly brackets), and at the single-point CCSD(T)/cc-pvtz/B3LYP/cc-pvtz (cc-pvtz-pp for Au) level (in square brackets). Here the term "Stuttgart" stands for Stuttgart_rsc_1997_ecp+2f1g. All energies at the DFT levels have been corrected for ZPEs.

Figure S5. A primitive bonding scheme for delocalized σ framework in B₁₁Au (5) cluster from the adaptive natural density partitioning (AdNDP) analysis. Occupation numbers (ONs) are shown. In this scheme, the σ framework is islanded as three-center two-electron (3c-2e) bonds. Its refined version is presented in Figure 8(d), in which the islands are expanded to 4c-2e σ bonds with moderately improved ON values.

4×3c-2e σ bonds ON=1.71-1.88 |e|

Figure S6. Simulated photoelectron spectra of (a) $B_{12}O^-(3)$ and (b) $B_{11}Au^-(7)$ clusters at the time-dependent PBE0/6-311+G(d) (Stuttgart_rsc_1997_ecp+2f1g for Au) level, in comparison with that of (c) B_{12}^- cluster. The simulations were done by fitting the calculated vertical detachment energies (VDEs) with unit-area Gaussian functions of 0.04 eV half-width.

