Supplementary Information

Thermoresponsive Dendritic Oligoethylene Glycols

Gang Xu, Jiaxing Zhang, Mengyuan Qi, Xiacong Zhang, Wen Li* and Afang Zhang

International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and

Engineering, Shanghai University, 333 Nanchen Road, 200444, China.

*E-mail: wli@shu.edu.cn

Table of Contents

Fig. S1 Plots of transmittance vs temperature for aqueous solutions of Et³-M (A), Et⁴-M (B), Et⁶-M (C), Et³-OMe (D), Et⁴-OMe (E), Et⁶-OMe (F), Me³-M and Me³-OMe (G, sample concentration 20 mg/mL). Heating and cooling rate = $0.2 \, {}^{\circ}C \cdot \min^{-1}$. Heating: solid line; cooling: Fig. S2 Thermally-induced aggregation monitored with NMR spectroscopy in D₂O: Temperature-varied ¹H NMR spectra of Et⁴-M (A); ¹H-¹H COSY spectra of Et⁴-M at 25 °C (below T_{cp}) (B) and 36 °C (above T_{cp}) (C). $T_{cp} = 31.4$ °C. Sample concentration 2.0 wt%.**3** Fig. S3 Thermally-induced aggregation monitored with NMR spectroscopy in D₂O: Temperature-varied ¹H NMR spectra of Et⁶-M (A); ¹H-¹H COSY spectra of Et⁶-M at 25 °C (below T_{cp}) (B) and 50 °C (above T_{cp}) (C). $T_{cp} = 41.7$ °C. Sample concentration 2.0 wt%.4 Fig. S4 Thermally-induced aggregation monitored with NMR spectroscopy in D₂O: Temperature-varied ¹H NMR spectra of **Et³-OMe** (A); ¹H-¹H COSY spectra of **Et³-OMe** at 25 °C (below T_{cp}) (B) and 60 °C (above T_{cp}) (C). $T_{cp} = 55.8$ °C. Sample concentration = 2.0 wt%. Fig. S5 Thermally-induced aggregation monitored with NMR spectroscopy in D₂O: Temperature-varied ¹H NMR spectra of **Et⁴-OMe** (A); ¹H-¹H COSY spectra of **Et⁴-OMe** at 25 ^oC (below T_{cp}) (B) and 44 ^oC (above T_{cp}) (C). $T_{cp} = 41.9$ ^oC. Sample concentration 2.0 wt%. .6 Fig. S6 Thermally-induced aggregation monitored with NMR spectroscopy in D₂O: Temperature-varied ¹H NMR spectra of **Et⁶-OMe** (A); ¹H-¹H COSY spectra of **Et⁶-OMe** at 25 °C (below T_{cp}) (B) and 60 °C (above T_{cp}) (C). $T_{cp} = 53.8$ °C. Sample concentration 2.0 wt%. .7 Fig. S7 Optical photographs of aqueous solutions of the dendritic esters below (A-C) and above (D-F) their T_{cp} s. All images have the same scale bar of 20 µm. Sample concentration **Fig. S8** Emission spectra of pyrene aqueous solutions $(1 \times 10^{-6} \text{ M})$ in the presence of dendritic macromonomers (0.25 wt%) Et³-M (A), Et⁴-M (B), and Et⁶-M (C) at different temperatures.

Fig. S1 Plots of transmittance vs temperature for aqueous solutions of Et^3 -M (A), Et^4 -M (B), Et^6 -M (C), Et^3 -OMe (D), Et^4 -OMe (E), Et^6 -OMe (F), Me^3-M and Me^3-OMe (G, sample concentration 20 mg/mL). Heating and cooling rate = 0.2 °C · min⁻¹. Heating: solid line; cooling: dot line.

Fig. S2 Thermally-induced aggregation monitored with NMR spectroscopy in D₂O: Temperaturevaried NMR spectra of **Et⁴-M** (A); ¹H-¹H COSY spectra of **Et⁴-M** at 25 °C (below T_{cp}) (B) and 36 °C (above T_{cp}) (C). $T_{cp} = 31.4$ °C. Sample concentration 2.0 wt%.

Fig. S3 Thermally-induced aggregation monitored with NMR spectroscopy in D₂O: Temperaturevaried ¹H NMR spectra of **Et⁶-M** (A); ¹H-¹H COSY spectra of **Et⁶-M** at 25 °C (below T_{cp}) (B) and 50 °C (above T_{cp}) (C). $T_{cp} = 41.7$ °C. Sample concentration 2.0 wt%.

Fig. S4 Thermally-induced aggregation monitored with NMR spectroscopy in D₂O: Temperaturevaried ¹H NMR spectra of **Et³-OMe** (A); ¹H-¹H COSY spectra of **Et³-OMe** at 25 °C (below T_{cp}) (B) and 60 °C (above T_{cp}) (C). T_{cp} = 55.8 °C. Sample concentration = 2.0 wt%.

Fig. S5 Thermally-induced aggregation monitored with NMR spectroscopy in D₂O: Temperaturevaried ¹H NMR spectra of **Et⁴-OMe** (A); ¹H-¹H COSY spectra of **Et⁴-OMe** at 25 °C (below T_{cp}) (B) and 44 °C (above T_{cp}) (C). $T_{cp} = 41.9$ °C. Sample concentration 2.0 wt%.

Fig. S6 Thermally-induced aggregation monitored with NMR spectroscopy in D₂O: Temperaturevaried ¹H NMR spectra of **Et⁶-OMe** (A); ¹H-¹H COSY spectra of **Et⁶-OMe** at 25 °C (below T_{cp}) (B) and 60 °C (above T_{cp}) (C). T_{cp} = 53.8 °C. Sample concentration 2.0 wt%.

Fig. S7 Optical photographs of aqueous solutions of the dendritic esters below (A-C) and above (D-F) their $T_{cp}s$. All images have the same scale bar of 20 µm. Sample concentration 2.0 wt%. A few air bubbles were appeared in the micrographs A and C below their $T_{cp}s$.

Fig. S8 Emission spectra of pyrene aqueous solutions $(1 \times 10^{-6} \text{ M})$ in the presence of dendritic macromonomers (0.25 wt%) Et³-M (A), Et⁴-M (B), and Et⁶-M (C) at different temperatures. λ_{ex} =333 nm.