Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Electronic Supplementary Materials

Time Evolution of Entanglement of Electrons and Nuclei and Partial Traces in Ultrafast Photochemistry

Martin Blavier, 1,2 R. D. Levine, 2,3 F. Remacle 1,2*

¹Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium

²The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

³ Department of Chemistry and Biochemistry and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA

Supplementary Figures

Figure S1: Curves of the non adiabatic coupling between the electronic states

Figure S2: Curves of the transition dipoles

Figure S3: Zoom on the time behavior of the singular values σ_4 , σ_5 and σ_6 .

Figure S4: Recovered population in the Σ_3 electronic state and associated coherences Σ_3 - Σ_4 and Σ_3 - Σ_2

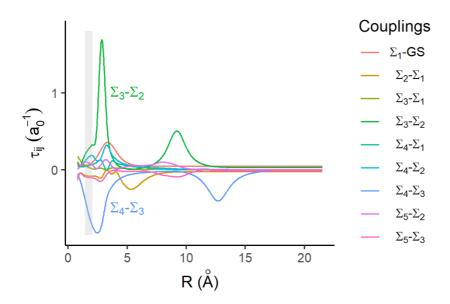


Figure S1: Curves of the non adiabatic couplings, adapted from S. van den Wildenberg, B. Mignolet, R. D. Levine and F. Remacle, *J. Chem. Phys.*, 2019, **151**, 134310.

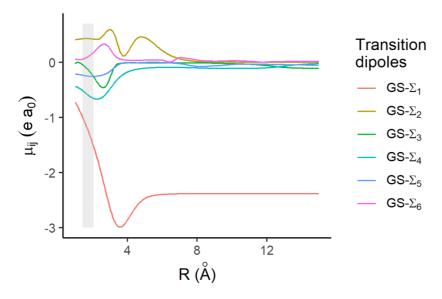


Figure S2: Curves of the transition dipoles between the GS and the excited electronic states, adapted from S. van den Wildenberg, B. Mignolet, R. D. Levine and F. Remacle, *J. Chem. Phys.*, 2019, **151**, 134310.

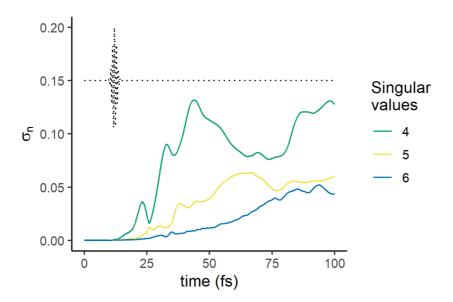


Figure S3. Zoom on the time dependence of the singular values σ_4 , σ_5 and σ_6 . The avoided crossings between σ_4 and σ_5 at 25 fs, and between σ_5 and σ_6 at 75 fs reflect the effect of the NAC coupling on the singular components. The weights of the electronic singular eigenvectors interchange in the regions of strong NAC.

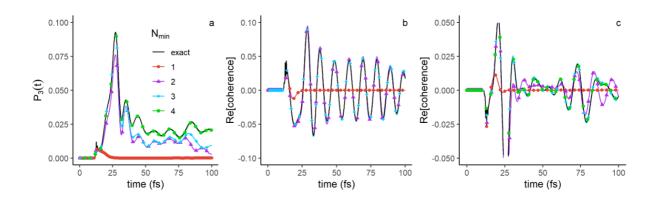


Figure S4. a) Recovered population of the Σ_3 state as a function of the number, N_{min} , of singular components included in Eq. (4). b) Recovered electronic coherence between the Σ_3 and the Σ_4 state. c) Recovered electronic coherence between Σ_3 and Σ_2 . The color code is given in the inset of panel a.