Electronic Supplementary Information

Significant enhancement of lattice thermal conductivity of monolayer AlN under bi-axial strain: A first principles study

Anibrata Banerjee¹, Bikram Kumar Das², Kalyan Kumar Chattopadhyay^{1,2,*}

¹School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032, India ²Department of Physics, Jadavpur University, Kolkata 700032, India **Corresponding Author Email: kalyan_chattopadhyay@yahool.com*

Figure 1S. a) Electronic band structure of pristine monolayer AlN, b) The total density of states (TDOS) of monolayer AlN

Figure 2S. Change in band gap of monolayer AlN with introduction of bi-axial strain a) Pristine, b) 1 %, c) 2 %, d) 3 %, e) 4 % and f) 5 %

Figure 3S. Phonon dispersions of strained structures of monolayer AlN with applied strain a) 2 % and b) 4 %

Figure 4S. Lattice thermal conductivity variation with temperature for pristine and different strained structures (1 % - 5 %) by relaxation time approximation (RTA) method

Applied bi-axial strain (in %)	Lattice thermal conductivity (W m ⁻¹ K ⁻¹)		
Pristine	69.54		
1 %	166.83		
2 %	402.31		
3 %	600.13		
4 %	802.85		
5 %	988.29		

Table 1S. Values of lattice thermal conductivity of unstrained and strained monolayer AlN calculated by relaxation time approximation (RTA) method at 300 K.

Figure 5S. Phonon lifetime of different phonon modes for pristine and strained structures (1 %, 3 % and 5 %), a) ZA mode, b) TA modes and c) LA modes

Figure 6S. Three-phonon scattering phase space of different phonon modes for pristine and strained structures (1 %, 3 % and 5 %), the total anharmonic three-phonon scattering phase space (P₃) for a) ZA mode, b) LA and TA modes, c) Optical modes, anharmonic three-phonon scattering phase space of absorption process (P₃⁺) for d) ZA mode, e) LA and TA modes, f) Optical modes, and anharmonic three-phonon scattering phase space of emission process (P₃⁻) for a) ZA mode, b) LA and TA modes, c) Optical modes, and anharmonic three-phonon scattering phase space of emission process (P₃⁻) for a) ZA mode, b) LA and TA modes, c) Optical modes and anharmonic three-phonon scattering phase space of emission process (P₃⁻) for a) ZA mode, b) LA and TA modes, c) Optical modes

Figure 7S. Mode resolved phonon group velocities for pristine and strained structures (1 %, 3 % and 5 %), a) ZA mode, b) TA modes and c) LA modes

Figure 8S. Top view of electron localization function (ELF) of monolayer AlN for unstrained and strained structures a) pristine, b) 1 % strain, c) 3 % strain and d) 5 % strain

Strain	Direction	Z*(Al)	Z*(N)	3
(in %)				
	XX	2.713428	-2.713428	1.570914
	XV	0.00000	0.000000	0.00000
	XZ	0.00000	0.000000	0.00000
	VX	0.00000	0.000000	0.00000
Pristine	vv	2.713428	-2.713428	1.570914
	yz	0.00000	0.000000	0.00000
	ZX	0.00000	0.000000	0.00000
	ZY	0.00000	0.000000	0.00000
	ZZ	0.404667	-0.404667	1.157815
	XX	2.727884	-2.727884	1.587260
	XV	0.00000	0.000000	0.000000
	XZ	0.00000	0.000000	0.00000
	ух	0.00000	0.000000	0.00000
1 %	yy	2.727884	-2.727884	1.587260
	yz	0.00000	0.000000	0.00000
	ZX	0.00000	0.000000	0.00000
	zy	0.00000	0.000000	0.00000
	ZZ	0.400569	-0.400569	1.158288
	XX	2.742100	-2.742100	1.604816
	ху	0.00000	0.000000	0.00000
	XZ	0.00000	0.000000	0.00000
	ух	0.00000	0.000000	0.00000
2 %	уу	2.742100	-2.742100	1.604816
	yz	0.00000	0.000000	0.000000
	ZX	0.00000	0.000000	0.000000
	zy	0.00000	0.000000	0.000000
	ZZ	0.396331	-0.396331	1.158754
	XX	2.756099	-2.756099	1.623683
	ху	0.00000	0.000000	0.00000
	XZ	0.00000	0.000000	0.00000
	ух	0.00000	0.000000	0.00000
3 %	уу	2.756099	-2.756099	1.623683
	yz	0.00000	0.000000	0.000000
	ZX	0.00000	0.000000	0.000000
	zy	0.00000	0.000000	0.000000
	ZZ	0.391850	-0.391850	1.159212
	XX	2.769843	-2.769843	1.643942
	xy	0.000000	0.000000	0.000000
	XZ	0.000000	0.000000	0.000000
	ух	0.000000	0.000000	0.000000
4 %	уу	2.769843	-2.769843	1.643942

Table 2S. Born effective charges (Z*) of Al and N atoms and the dielectric constants (ϵ) of unstrained and strained monolayer AlN

	VZ	0.00000	0.00000	0.00000
	J = ZX	0.00000	0.000000	0.00000
	ZV	0.00000	0.000000	0.00000
	ZZ	0.387291	-0.387291	1.159662
	XX	2.783439	-2.783439	1.665895
xy xz yx 5 % yy yz zx zx zx	XV	0.00000	0.000000	0.00000
	XZ	0.00000	0.000000	0.00000
	VX	0.00000	0.00000	0.00000
	VV	2.783439	-2.783439	1.665895
	VZ	0.00000	0.000000	0.00000
	ZX	0.00000	0.000000	0.00000
	ZV	0.00000	0.000000	0.00000
	ZZ	0.382481	-0.382481	1.160104