Supporting Information

(CH₃)₂C=NHCH₃PbBr₃/CH₃NH₃PbBr₃ Core-Shell Heterostructure Fabricated by In-Situ A-Site Reaction for Fast Response 1D Perovskite Photodetectors

Wei Wang, Jie Zhao*, Lin Jiang, Shaochao Liu, Li Wang*
School of Physics and Materials Science, Nanchang University, Nanchang 330031,
P.R. China
E-mail: ncu915@outlook.com (J.Z.); wl@ncu.edu.cn (L.W.)

Figure S1 The schematic diagram of the fabrication of $(CH_3)_2C=NHCH_3PbBr_3/CH_3NH_3PbBr_3$ core-shell device.

Figure S2. The XRD patterns of MWs in air and N_2 with 1 atm, right is the enlargement from 14.4° to 15.4°.

In order to study the effect of water on the reverse transition, we put the fresh $(CH_3)_2C=NHCH_3PbBr_3$ microwires in a vacuum device, evacuated first and then ventilate with nitrogen (1 atm), and store it for 24 hours. For comparison, some fresh microwires were exposed in air (relative humidity >80%) for 24h. The XRD results are shown in **Figure 10**, after 24 hours, the latter shows weak diffraction peaks at 14.9 corresponding to the (100) lattice planes of the CH₃NH₃PbBr₃ cubic structure, but the former without CH₃NH₃PbBr₃ perovskite signal peaks. This proves that water molecules played an important role in the reversible phase transition of $(CH_3)_2C=NHCH_3PbBr_3$ to CH₃NH₃PbBr₃.

Figure S3. (a) The XRD pattern during core-shell MWs evolution. (b) XRD patterns of core-shell MWs stored after 454 days, CH₃NH₃PbBr₃ powder, and the PbBr₂ reference pattern #00-031-0679 (black bars).

The phase transition rate from (CH₃)₂C=NHCH₃PbBr₃ to CH₃NH₃PbBr₃ is very slow. The microwires cannot completely transform back to the CH₃NH₃PbBr₃ phase, even if they are exposed in the air after 150 days. The reversed CH₃NH₃PbBr₃ shell exhibits strong water stability over 454 days aging [1].

Figure S4. (a) Responsivity (*R*), (b) external quantum efficiency (*EQE*) and detectivity (D^*) of the photodetectors. The wavelength of the light source is 460 nm, the illumination intensity is from 1×10^{-4} to 389 mW cm⁻², and the bias voltage is 10V, 15 V and 20 V.

Figure S5. The optical microscopy image of single core-shell photodetector.

Table S1. Comparison of the key performance parameter for 1D CH₃NH₃PbBr₃ perovskite photodetectors reported in literature and the present measurements

Year	Device structure	Responsivity					
		(mA/W)	Detectivity	EQE	On/off ratio / light intensity	Response	
		@V bias/	(Jonse)	(%)		Speed(ms)	Ref
		light	@V bias	/Gain		(rise/decay)	
		intensity					
2015	Au/ CH ₃ NH ₃ PbBr ₃ NW				61.9/	120/86	[2]
	@TiO ₂ @P ₃ HT /Au	-	-	-	27.5 mW cm ⁻²		
2018	InGa/CH ₃ NH ₃ PbBr ₃ MW/InGa	525@ 2V/-	-	-	-	407/895	[1]
2019	Au/ CH3NH3PbBr3 NW/Au	2100@2V/-	1.2 × 10 ¹²	-	5×10 ³ /	900/200	[3]
					83.3 mW cm ⁻²		
2019	Au/ CH3NH3PbBr3NP@Si	223@2V/50	7.2×10^{10}	-	-	320/280	[4]
	NW/Au	mW cm ⁻²					
	Ag/(CH ₃) ₂ C=NHCH ₃ PbBr ₃ -	66.8@20V/	3.7×10^{11}	18.0	3428/	2.8/0.8	Our

CH ₃ NH ₃ PbBr ₃ NW/Ag	0.1uW cm ⁻²		76.1 mW cm ⁻²	work

NWs = Nanowires; NPs = Nanoplatelets; '-' = Not Given

Figure S6. The I-V of the core-shell MW and CH₃NH₃PbBr₃ MW based photodetector device measured under 460 nm wavelength illumination, 20V bias.

Supplementary Notes

Calculation of figures of merit of (CH₃)₂C=NHCH₃PbBr₃/CH₃NH₃PbBr₃ heterostructured microwire photodetectors (HMPs)

To evaluate photoresponse characteristics, several parameters need to be determined. Although certain applications require different features, the key figure-of-merit parameters in photodetectors are the responsivity (R), external quantum efficiency (EQE) and specific detectivity (D^*).

The *R* is defined as the ratio of photocurrent to the incident-light intensity, which calculated using the following formula [5]:

$$R = \frac{\bigtriangleup I}{PS}$$

where ΔI is the difference between the light current and dark current ($\Delta I = I_{on} - I_{off}$), *P* is the irradiance power density, and *S* is the effective illuminated area.

The *EQE* indicates the photon-electron conversion effciency and is calculated as following [6]:

$$EQE = R \frac{hc}{\lambda q}$$

where R is the responsivity, h the Planck constant, c the velocity of light, q the elementary charge, and λ the wavelength of incident light.

The D^* , the minimum signal that can be detected of the photodetector. If considering that the noise current is dominated by shot noise in the dark current, D^* can be simply expressed as:

$$D^* = R/(2eI_d)^{1/2}$$

where e is the absolute value of electron charge (1.6×10^{-19} Coulomb), and I_d the dark

current density

Supplementary References:

- 1 F. Chen, C. Xu, Q. Xu, Y. Zhu, F. Qin, W. Zhang, Z. Zhu, W. Liu and Z. Shi, ACS Appl. Mater. Inter., 2018, 10.
- 2 S. F. Zhuo, J. F. Zhang, Y. M. Shi, Y. Huang and B. Zhang, *Angew. Chem.Int. Edit.*, **2015**, *54*, 5693-5696.
- 3 K. K. Ren, J. Wang, K. Liu, Y. B. Huang, Y. Sun, M. Azam, P. Jin, Z. J. Wang, S. C. Qu and Z. G. Wang, *RSC Adv.*, **2019**, *9*, 19772-19779.
- 4 J. Ghosh, R. Ghosh and P. K. Giri, ACS Appl. Mater. Interfaces, 2019, 11, 14917-14931.
- 5 M. Cao, J. Y. Tian, Z. Cai, L. Peng, L. Yang and D. C. Wei, *Appl. Phys. Lett.*, **2016**, *109*, 4.
- 6 B. W. H. Baugher, H. O. H. Churchill, Y. F. Yang and P. Jarillo-Herrero, *Nat. Nanotech.*, **2014**, *9*, 262-267.