Supplementary Information

Insights into the crucial role of Zn promoter for methanol

dehydrogenation to methyl formate over Cu(111) catalyst

Shiping Wu ^{a,b}, Wei Sun ^{a,b}, Xuhui Wang ^c, Jinxian Zhao ^{a,b*}, Yan Li ^{a,b}, Yanhong

Quan ^{a,b}, Jun Ren ^{a,b}*

^a State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China

^b Key Laboratory of Coal Science and Technology Taiyuan University of Technology, Ministry of Education

^c School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030013, China

*Corresponding author. Mailing address for correspondence: No. 79 Yingze West Street, Taiyuan 030024, China. Tel/Fax: +86 351 6018598.

E-mail address: <u>zhaojinxian@tyut.edu.cn</u> (J. X. Zhao), <u>renjun@tyut.edu.cn</u> (J. Ren).

The differences between DFT and DFT-D3 calculation methods

Table S1 list the adsorption energies of CH₃OH, CH₂O, CH₃OCHO and CO using DFT and DFT-D3 calculations. The results show that both DFT and DFT-D3 calculation have very close values of the adsorption energies for the reaction of methanol dehydrogenation.

Table S1. Adsorption energies(kJ/mol) of CH₃OH, CH₂O, CH₃OCHO and CO on Cu

catalysts Cu ₃		111)	Cu(111)	
molecules	Without DFT-D3	With DFT-D3	Without DFT-D3	With DFT-D3
CH ₃ OH	-53.0	-51.1	-40.4	-42.7
CH ₂ O	-23.7	-21.3	-43.6	-50.7
CH ₃ OCHO	-33.0	-41.6	-37.5	-48.4
СО	-82.1	-91.5	-105.4	-119.5

catalysts surface with and without DFT-D3 dispersion correction.