# Supplementary Information

# Magnetic deep eutectic solvents: formation and properties

Ruifen Shi<sup>a</sup>, Fengyi Zhou<sup>a</sup>, Yu Chen<sup>\*b</sup>, Zhenghui Liu<sup>\*c</sup>, Shuzi Liu<sup>a</sup>, Tiancheng Mu<sup>\*a</sup>

a. Department of Chemistry, Renmin University of China, Beijing 100872, China. E-mail: tcmu@ruc.edu.cn; Tel: +86-10-62514925

b. Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, P.R. China.

c. School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China.

### Table of Contents

| 1. | Experiment    |        | Section |
|----|---------------|--------|---------|
|    |               | 2      |         |
| 2. | Supplementary | Figure | •••••   |
|    | 3             |        |         |
| 3. | Table         |        | 4       |

### 1. Experiment Section

#### **Density model expression**

For all prepared MDESs, the density values decrease linearly with temperature in the whole measured temperature range and thus could be expressed by the following equation (1):

$$\rho = a + bT \tag{1}$$

where  $\rho$  (g cm<sup>-3</sup>) corresponds to density, T is the temperature in °C, a and b are the fitting parameters.

#### Viscosity model expression

The experimental viscosity values of MDESs were fitted as a function of temperature by using the Vogel-Fulcher-Tammann (VFT) model:

$$\ln \eta = A + \frac{B}{T - T_0} \tag{2}$$

where  $\eta$  (mPa s) is the viscosity, T (°C) is the temperature, A, B and T<sub>0</sub> are adjustable parameters.



## 2. Supplementary Figures and Discussion

Figure S1. TG and DTG curves of MDESs.

### 3. Table

Table S1. The onset temperatures  $(T_{onset})$  and maximum decomposition temperatures of MDESs.

|        | T <sub>onset</sub> /°C | $T_{max}/^{\circ}C$ |
|--------|------------------------|---------------------|
| MDES1  | 71.6                   | 136.7               |
| MDES2  | 66.2                   | 281.6               |
| MDES3  | 72.8                   | 141.4               |
| MDES4  | 79.2                   | 234.6               |
| MDES5  | 73.1                   | 227.6               |
| MDES6  | 71.8                   | 199.2               |
| MDES7  | 89.7                   | 205.3               |
| MDES8  | 66.3                   | 133.4               |
| MDES9  | 71.8                   | 255.8               |
| MDES10 | 75.3                   | 148.2               |
| MDES11 | 74.6                   | 134.7               |

Table S2. Physicochemical properties (conductivity, Kamlet–Taft Parameters and pH) of MDES9 with different molar ratio at 25 °C.

| Components (molar ratio)              | $\sigma$ (µS cm <sup>-1</sup> ) | α    | β    | π*   | рН  |
|---------------------------------------|---------------------------------|------|------|------|-----|
| $NiCl_2 \cdot 6H_2O$ : Glycerol (1:1) | 2800                            | 1.20 | 1.01 | 0.94 | 2.4 |
| $NiCl_2 \cdot 6H_2O$ : Glycerol (1:3) | 1370                            | 1.17 | 0.98 | 0.92 | 2.9 |

|        | a (g cm <sup>-3</sup> ) | b (g cm <sup>-3</sup> K <sup>-1</sup> ) | $\mathbb{R}^2$ |
|--------|-------------------------|-----------------------------------------|----------------|
| MDES1  | 1.481                   | -9.037×10-4                             | 0.999          |
| MDES2  | 1.546                   | -7.003×10 <sup>-4</sup>                 | 0.999          |
| MDES3  | 1.358                   | -9.163×10 <sup>-4</sup>                 | 0.999          |
| MDES4  | 1.510                   | -8.128×10 <sup>-4</sup>                 | 0.999          |
| MDES5  | 1.449                   | -1.080×10 <sup>-3</sup>                 | 0.999          |
| MDES6  | 1.559                   | -1.770×10 <sup>-3</sup>                 | 0.990          |
| MDES7  | 1.480                   | -5.688×10-4                             | 0.999          |
| MDES8  | 1.367                   | -7.783×10 <sup>-4</sup>                 | 0.999          |
| MDES9  | 1.527                   | -5.666×10-4                             | 0.999          |
| MDES10 | 1.494                   | -7.090×10 <sup>-4</sup>                 | 0.999          |
| MDES11 | 1.666                   | -2.901×10 <sup>-3</sup>                 | 0.955          |

Table S3. Parameters a and b of Equation (1) and respective correlation coefficient ( $R^2$ ), depicting temperature dependence of density of the studied MDESs.

|        | A (mPa s) | B (K)  | $T_{0}\left(K ight)$ | <b>R</b> <sup>2</sup> |
|--------|-----------|--------|----------------------|-----------------------|
| MDES1  | -2.371    | 700.7  | 195.2                | 0.999                 |
| MDES2  | -6.699    | 2306.3 | 154.0                | 0.999                 |
| MDES3  | -2.341    | 695.7  | 205.2                | 0.999                 |
| MDES4  | -2.455    | 866.5  | 201.4                | 0.999                 |
| MDES5  | -1.988    | 583.1  | 209.9                | 0.999                 |
| MDES6  | -2.921    | 755.4  | 200.9                | 0.999                 |
| MDES7  | -2.384    | 920.0  | 169.3                | 0.999                 |
| MDES8  | -3.199    | 1026.8 | 183.2                | 0.998                 |
| MDES9  | -3.811    | 1425.5 | 171.3                | 1                     |
| MDES10 | -3.179    | 1026.8 | 199.3                | 0.999                 |
| MDES11 | -2.370    | 852.5  | 198.9                | 0.999                 |

Table S4. Fitted parameters of VFT model given by Equation (2) and respective correlation coefficient ( $R^2$ ) for prepared MDESs.