Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supporting Information for

Comprehensive understanding of intrinsic mobility and sub-10 nm quantum

transportation in Ga₂SSe monolayer

Baisheng Sa^{1,*}, Xiaotian Shen¹, Shuchang Cai¹, Zhou Cui¹, Rui Xiong¹, Chao Xu², Cuilian Wen^{1,**},

and Bo Wu^1

¹Multiscale Computational Materials Facility, and Key Laboratory of Eco-materials Advanced

Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R.

China

²Xiamen Talentmats New Materials Science & Technology Co., Ltd., Xiamen 361015,

P. R. China

Corresponding Authors: *bssa@fzu.edu.cn (B. Sa); **clwen@fzu.edu.cn (C. Wen)

Acoustic	Sound velocity	Acoustic energy (meV)			
mode	(m/s)	G	К	М	
ZA	204	0	7.24	7.51	
ТА	2834	0	9.39	8.95	
LA	4851	0	13.65	9.92	

Table S1. The sound velocities and acoustic energies of the acoustic modes at high symmetry points

for Ga₂SSe monolayer

Polarity direction	Doping type	Doping concentration (cm ⁻³)	<i>I_{on}</i> (μΑ/μm)	SS (mV/dec)	I_{on}/I_{off}
		1×10 ²⁰	659	64	6.59×10 ³
		2×10 ²⁰	1828	68	1.82×10 ⁴
	<i>n</i> -type	3×10 ²⁰	2351	72	2.35×10 ⁴
		4×10 ²⁰	2181	77	2.18×10 ⁴
		5×10 ²⁰	2021	81	2.02×10 ⁴
Armchair		1×10 ²¹	614	88	6.14×10 ³
		2×10 ²¹	1234	95	1.23×10 ⁴
	<i>p</i> -type	3×10 ²¹	1661	94	1.66×10 ⁴
		4×10 ²¹	1791	95	1.79×10 ⁴
		5×10 ²¹	1077	97	1.07×10 ⁴
		6×10 ²⁰	764	89	7.64×10 ³
		7×10^{20}	1564	63	1.56×10 ⁴
	<i>n</i> -type	8×10^{20}	1631	65	1.63×10 ⁴
		9×10 ²⁰	1741	64	1.74×10 ⁴
		1×10 ²¹	900	98	9.0×10 ³
Zıgzag		1×10 ²¹	648	88	6.48×10 ³
		2×10 ²¹	1198	97	1.19×10 ⁴
	<i>p</i> -type	3×10 ²¹	1293	100	1.29×10 ⁴
		4×10 ²¹	1218	105	1.21×10 ⁴
		5×10 ²¹	954	112	9.54×10 ³

Table S2. Transport parameters of Ga₂SSe FET with different doping concentrations and transport

directions for the gate length of 9 nm

-		-		
L_g	Gate	Ion	SS	Low/Loff
(nm)	position	$(\mu A/\mu m)$	(mV/dec)	-01/-0jj
	Тор	-	252	-
5	Bottom	14	267	1.40×10^{2}
	Double	88	189	8.80×10 ²
	Тор	517	132	5.17×10 ³
7	Bottom	603	138	6.03×10 ³
	Double	1768	104	1.76×10 ⁴
	Тор	1015	87	1.01×10 ⁴
9	Bottom	1238	89	1.23×10 ⁴
	Double	2351	72	2.35×10 ⁴

Table S3. Transport parameters of Ga_2SSe FET with different gate lengths and different gate

positions along the armchair direction

Fig. S1 The (a, b) vacuum thickness, (c, d) cutoff energy and (e, f) KPOINTS mesh test results.

Fig. S2 The band structures for Ga₂SSe monolayer without and with including the spin orbital coupling (SOC) effect. The Fermi energy is set to 0 eV.

Fig. S3 The electron-phonon interaction matrix elements of the (a) $E_1^{"}$, (b) $E_2^{"}$, (c) $A_1^{'}$, (d) $E_3^{"}$, (e) $E_1^{'}$,

(f) E'_2 phonon modes.

Fig. S4 The atomic dispersions for the (a) ZA, (b) TA, (c) LA, (d) $E_1^{"}$, (e) $E_2^{"}$, (f) $A_1^{'}$, (g) $E_3^{"}$, (h) $E_4^{"}$,

(i) E'_1 , (j) E'_2 (k) A'', (l) A'_2 phonon modes.