Anthraquinone and its Derivatives as Sustainable Materials for Electrochemical Applications – a Joint Experimental and Theoretical Investigation of the Redox Potential in Solution

Supplementary Material

Josef M. Gallmetzer^a, Stefanie Kröll^a, Daniel Werner^b, Dominik Wielend^c, Mihai Irimia-Vladu^c, Engelbert Portenkirchner^b^{*b}, Niyazi Serdar Sariciftci^c, Thomas S. Hofer^{a†}

^aTheoretical Chemistry Division Institute of General, Inorganic and Theoretical Chemistry Center for Chemistry and Biomedicine University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria

^bInstitute of Physical Chemistry Josef-Möller-Haus University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria

^cLinz Institute for Organic Solar Cells (LIOS) Institute of Physical Chemistry Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria

June 20, 2022

 $[\]label{eq:corresponding} \ensuremath{^*\text{Corresponding author (experimental): engelbert.portenkirchner@uibk.ac.at}$

 $^{^{\}dagger}\mbox{Corresponding author (theory): t.hofer@uibk.ac.at}$

Compound:	$\Delta E^{\circ}(\mathrm{AQ/AQ}^{\bullet-}) \ / \ \mathrm{mV}$	$\Delta E^{\circ}(\mathrm{AQ/AQ^{2-}}) \ / \ \mathrm{mV}$
AQ	-683.6	-1432.3
1-OH	-530.0	-1178.5
2-OH	-707.5	-1139.8
$1,2 ext{-OH}$	-542.9	-1125.5
1,4-OH	-423.9	-1066.4
$1,5 ext{-OH}$	-369.1	-893.5
1,8-OH	-396.4	-1107.0
$1-\mathbf{NH}_2$	-816.4	-1516.9
$2\text{-}\mathbf{N}\mathbf{H}_2$	-875.9	-
$\mathbf{1,2-NH}_2$	-950.6	-1551.2
$1,4 extsf{-}\mathbf{NH}_2$	-983.4	-1541.8
$\mathbf{2,6-NH}_2$	-1086.0	-1652.3
1-NH ₂ -4-OH	-710.4	-1328.9

Table S1: Experimentally determined reduction potentials.

Compound	ΔE_{calc}° / mV	$\Delta E_{meas}^{\circ} \ / \ { m mV}$	$\Delta\Delta E^{\circ}$ / mV
AQ*	-683.6*	-683.6	0.0
1-OH	-528.1	-530.0	-1.9
2-OH	-718.8	-707.5	11.3
1, 2-O H	-554.3	-542.9	11.4
1,4-OH	-466.0	-423.9	42.1
1,5-OH	-387.9	-369.1	18.8
1,8-OH	-436.5	-396.4	40.1
$1-NH_2$	-796.4	-816.4	-20.0
$2-\mathbf{NH}_2$	-834.6	-875.9	-41.3
$\mathbf{1,2-NH}_2$	-945.0	-950.6	-5.6
$\mathbf{1,4-NH}_2$	-1010.4	-983.4	26.9
$\mathbf{2,6-NH}_2$	-1006.3	-1086.0	-79.7
$\boxed{1-OH-4-NH_2}$	-728.8	-710.4	18.4

Table S2: Comparison of the electrochemical potential obtained for the first reduction step $(AQ/AQ^{\bullet-})$ at B3LYP+D3/SMD level against the experimental reference.

Compound	ΔE_{calc}° / mV	$\Delta E_{meas}^{\circ} \ / \ { m mV}$	$\Delta\Delta E^{\circ}$ / mV
\mathbf{AQ}	-1432.3*	-1432.3	0.0
1-OH	-1196.9	-1178.5	18.4
2-OH	-1474.4	-1139.8	334.6
1, 2-OH	-1177.9	-1125.5	52.4
1,4-OH	-1135.9	-1066.4	69.5
$1,5 ext{-OH}$	-1032.8	-893.5	139.3
1,8-OH	-1129.61	-1107.0	22.6
$1-\mathbf{NH}_2$	-1494.4	-1516.9	-22.5
$\mathbf{1,2-NH}_2$	-1601.9	-1551.2	50.8
$\mathbf{1,4-NH}_2$	-1616.2	-1541.8	74.4
$\mathbf{2,6-NH}_2$	-1696.3	-1652.3	44.0
$\boxed{1-\text{OH-4-NH}_2}$	-1369.2	-1328.9	40.3

Table S3: Comparison of the electrochemical potential obtained for the second reduction step (AQ/AQ^{2-}) at B3LYP+D3/SMD level against the experimental reference.

Compound	ΔE_{calc}° / mV	ΔE_{meas}° / mV	$\Delta \Delta E^\circ$ / mV
AQ*	-683.6*	-683.6	0.0
1-OH	-524.1	-530.0	-5.9
2-OH	-746.7	-707.5	39.2
1,2-OH	-605.0	-542.9	62.1
1,4-OH	-415.5	-423.9	-8.4
1,5-OH	-375.5	-369.1	6.4
1,8-OH	-418.1	-396.4	21.7
$1-NH_2$	-814.4	-816.4	-2.0
$2-\mathbf{NH}_2$	-881.3	-875.9	5.0
$\mathbf{1,2-NH}_2$	-967.0	-950.6	25.4
$1,4-\mathbf{NH}_2$	-1000.1	-983.4	16.6
$\mathbf{2,6-NH}_2$	-1051.4	-1086.0	-34.6
$\boxed{1-OH-4-NH_2}$	-698.9	-710.4	-11.5

Table S4: Comparison of the electrochemical potential obtained for the first reduction step $(AQ/AQ^{\bullet-})$ at SCC DFTB/3ob/COSMO level against the experimental reference.

Compound	ΔE_{calc}° / mV	ΔE_{meas}° / mV	$\Delta \Delta E^\circ$ / mV
AQ	-1432.3*	-1432.3	0.0
1-OH	-1175.2	-1178.5	-3.3
2-OH	-1484.5	-1139.8	344.7
1, 2-O H	-1212.9	-1125.5	87.3
1,4-OH	-1059.6	-1066.4	-6.8
1,5-OH	-954.3	-893.5	60.8
1,8-OH	-1113.5	-1107.0	6.54
$1-NH_2$	-1544.3	-1516.9	27.4
$\mathbf{1,2-NH}_2$	-1665.2	-1551.2	114.0
$\mathbf{1,4-NH}_2$	-1631.6	-1541.8	89.8
$\mathbf{2,6-NH}_2$	-1750.5	-1652.3	98.2
$\boxed{1-OH-4-NH_2}$	-1330.9	-1328.9	2.0

Table S5: Comparison of the electrochemical potential obtained for the second reduction step (AQ/AQ^{2-}) at SCC DFTB/3ob/COSMO level against the experimental reference.

Compound	ΔE_{calc}° / mV	ΔE_{meas}° / mV	$\Delta \Delta E^\circ$ / mV
AQ*	-683.6*	-683.6	0.0
1-OH	-534.4	-530.0	4.4
2-OH	-758.3	-707.5	50.7
1,2-OH	-617.2	-542.9	74.3
1,4-OH	-440.6	-423.9	16.7
1,5-OH	-417.7	-369.1	48.6
1,8-OH	-440.5	-396.4	44.1
$1-NH_2$	-922.9	-816.4	106.5
$2-NH_2$	-916.1	-875.9	40.2
$\mathbf{1,2-NH}_2$	-1023.8	-950.6	73.2
$1,4-NH_2$	-997.7	-983.4	14.3
$\mathbf{2,6-NH}_2$	-1212.0	-1086.0	126.0
$\boxed{1-OH-4-NH_2}$	-699.48	-710.4	-10.9

Table S6: Comparison of the electrochemical potential obtained for the first reduction step $(AQ/AQ^{\bullet-})$ at SCC DFTB/mio/COSMO level against the experimental reference.

Compound	ΔE_{calc}° / mV	ΔE_{meas}° / mV	$\Delta \Delta E^\circ$ / mV
AQ	-1432.3*	-1432.3	0.0
1-OH	-1152.3	-1178.5	-26.2
2-OH	-1586.8	-1139.8	447.0
1, 2-O H	-1188.9	-1125.5	-63.3
1,4-OH	-1026.2	-1066.4	-40.2
1,5-OH	-914.4	-893.5	20.9
1,8-OH	-1082.7	-1107.0	-24.3
$1-NH_2$	-1511.7	-1516.9	-5.2
$\mathbf{1,2-NH}_2$	-1686.1	-1551.2	134.9
$1,4-\mathbf{NH}_2$	-1634.1	-1541.8	92.3
$\mathbf{2,6-NH}_2$	-1859.0	-1652.3	206.7
$\boxed{1-OH-4-NH_2}$	-1289.8	-1328.9	-39.08

Table S7: Comparison of the electrochemical potential obtained for the second reduction step (AQ/AQ^{2-}) at SCC DFTB/mio/COSMO level against the experimental reference.

Compound	ΔE_{calc}° / mV	ΔE_{meas}° / mV	$\Delta \Delta E^\circ$ / mV
AQ^*	-683.6*	-683.6	0.0
1-OH	-592.9	-530.0	62.3
2-OH	-748.5	-707.5	41.0
1, 2-O H	-653.3	-542.9	110.4
1,4-OH	-535.1	-423.9	111.2
1,5-OH	-509.1	-369.1	140.0
1,8-OH	-521.8	-396.4	125.4
$1-NH_2$	-918.1	-816.4	101.7
$2-\mathbf{NH}_2$	-977.3	-875.9	101.4
$\mathbf{1,2-NH}_2$	-1147.0	-950.6	196.4
$\mathbf{1,4-NH}_2$	-1219.5	-983.4	236.1
$\mathbf{2,6-NH}_2$	-1278.3	-1086.0	192.3
$\boxed{1-OH-4-NH_2}$	-871.8	-710.4	161.4

Table S8: Comparison of the electrochemical potential obtained for the first reduction step $(AQ/AQ^{\bullet-})$ at GFN2-xTB/GBSA level against the experimental reference.

Compound	ΔE_{calc}° / mV	ΔE_{meas}° / mV	$\Delta \Delta E^\circ$ / mV
\mathbf{AQ}	-1432.3*	-1432.3	0.0
1-OH	-1204.8	-1178.5	26.3
2-OH	-1476.4	-1139.8	336.6
1, 2-O H	-1213.4	-1125.5	87.9
1,4-OH	-1143.9	-1066.4	77.5
1,5-OH	-1124.6	-893.5	231.1
1,8-OH	-1175.4	-1107.0	68.4
$1-NH_2$	-1603.1	-1516.9	86.2
$\mathbf{1,2-NH}_2$	-1761.3	-1551.2	210.1
$1,4-\mathbf{NH}_2$	-1791.1	-1541.8	249.3
$\mathbf{2,6-NH}_2$	-1880.5	-1652.3	228.2
$\boxed{1-OH-4-NH_2}$	-1449.0	-1328.9	120.1

Table S9: Comparison of the electrochemical potential obtained for the second reduction step (AQ/AQ^{2-}) at GFN2-xTB/GBSA level against the experimental reference.

Compound	ΔE_{calc}° / mV	ΔE_{meas}° / mV	$\Delta \Delta E^\circ$ / mV
AQ^*	-683.6*	-683.6	0.0
1-OH	-548.7	-530.0	18.7
2-OH	-739.0.	-707.5	31.5
1, 2-O H	-588.9	-542.9	46.0
1,4-OH	-467.6	-423.9	43.7
1,5-OH	-451.6	-369.1	82.5
1,8-OH	-478.6	-396.4	82.2
$1-NH_2$	-888.2	-816.4	71.8
$2-\mathbf{NH}_2$	-1029.9	-875.9	154.0
$\mathbf{1,2-NH}_2$	-1100.3	-950.6	149.8
$\mathbf{1,4-NH}_2$	-1200.9	-983.4	217.5
$\mathbf{2,6-NH}_2$	-1317.8	-1086.0	231.8
$\boxed{1-OH-4-NH_2}$	-822.1	-710.4	111.7

Table S10: Comparison of the electrochemical potential obtained for the first reduction step $(AQ/AQ^{\bullet-})$ at GFN2-xTB/ALPB level against the experimental reference.

Compound	ΔE_{calc}° / mV	ΔE_{meas}° / mV	$\Delta \Delta E^\circ$ / mV
AQ	-1432.3*	-1432.3	0.0
1-OH	-1145.5	-1178.5	-33.0
2-OH	-1464.7	-1139.8	324.9
1,2-OH	-1124.7	-1125.5	-0.8
1,4-OH	-1035.9	-1066.4	-30.5
1,5-OH	-944.0	-893.5	50.5
1,8-OH	-1076.7	-1107.0	-30.3
$1-NH_2$	-1579.6	-1516.9	62.7
$\mathbf{1,2-NH}_2$	-1747.6	-1551.2	196.4
$1,4-\mathbf{NH}_2$	-1727.9	-1541.8	186.1
$\mathbf{2,6-NH}_2$	-1891.4	-1652.3	239.1
$1-\overline{\mathbf{OH}-4-\mathbf{NH}_2}$	-1371.7	-1328.9	42.8

Table S11: Comparison of the electrochemical potential obtained for the second reduction step (AQ/AQ^{2-}) at GFN2-xTB/ALPB level against the experimental reference.

Table S12: Isodesmic reaction: Calculation of derivative reduction potentials using a reference reaction.

X-AQ	+	e^-	\longrightarrow	$\operatorname{X-AQ}^{\bullet-}$			$-FE^{\circ}$
$\mathrm{AQ}^{\bullet-}$			\longrightarrow	AQ	+	e ⁻	FE_{ref}°
$AQ^{\bullet-}$	+	X-AQ	\longrightarrow	AQ	+	$X-AQ^{\bullet-}$	ΔG_r°

		AQ / AQ \bullet^-	AQ / AQ^{2-}	
		full	full	excluding 2-OH-AQ
B3LYP+D3	a	0.84 ± 0.02	0.78 ± 0.12	0.86 ± 0.03
	b / mV	-145 ± 16	-320 ± 150	-250 ± 34
	\mathbb{R}^2	0.992	0.826	0.992
SCC DFTB/3ob	a	0.78 ± 0.04	0.62 ± 0.10	0.69 ± 0.04
	b / mV	-198 ± 29	-536 ± 124	-486 ± 44
	\mathbb{R}^2	0.974	0.812	0.979
SCC DFTB/mio	a	0.76 ± 0.03	0.60 ± 0.10	0.66 ± 0.04
	b / mV	-179 ± 19	-537 ± 171	-495 ± 48
	\mathbb{R}^2	0.989	0.818	0.974
GFN2-xTB	a	0.77 ± 0.02	0.69 ± 0.09	0.73 ± 0.03
	b / mV	-156 ± 13	-426 ± 113	-403 ± 38
	\mathbf{R}^2	0.995	0.873	0.987

Table S13: Fit parameters of the linear regression applied to the experimentally determined electrochemical potentials plotted against the results obtained for the different theoretical calculation methods in vacuum.

Figure S1: Correlation between the electrochemical potentials for the first (left) and second (right) reduction step of different AQ-derivatives between A,B) the experimental reference and the GFN2-xTB/ALPB level as well as C,D) the GFN2-xTB/ALPB and GFN2-xTB/GBSA levels, respectively. Black line: ideal correlation. Red line: linear regression. Green dashed line: linear regression without the outlier 2-OH-AQ marked by a red dot.

Figure S2: Comparison of the absolute deviation between the employed computational methods from the experimental reference for the first reduction step $(AQ/AQ^{\bullet-})$.

Figure S3: Comparison of the absolute deviation between the employed computational methods from the experimental reference for the first reduction step (AQ/AQ^{2-}) .

Figure S4: Comparison of the absolute deviation between the employed DFTB and xTB methods from the B3LYP+D3 reference for the first reduction step $(AQ/AQ^{\bullet-})$.

Figure S5: Comparison of the absolute deviation between the employed DFTB and xTB methods from the B3LYP+D3 reference for the second reduction step (AQ/AQ^{2-}) .

Figure S6: Comparison of the absolute deviation between the SCC DFTB/3ob and SCC DFTB/mio levels as well as between GFN2-xTB/ALPB and GFN2-xTB/GBSA for the first reduction step $(AQ/AQ^{\bullet-})$ of the different AQ derivatives.

Figure S7: Comparison of the absolute deviation between the SCC DFTB/30b and SCC DFTB/mio levels as well as between GFN2-xTB/ALPB and GFN2-xTB/GBSA for the second reduction step (AQ/AQ^{2-}) of the different AQ derivatives.

Figure S8: Correlation between the experimentally and theoretically determined electrochemical potentials for the first (left) and second (right) reduction step of the considered AQderivatives obtained at A,B) B3LYP+D3/6-31++G(d,p), C,D) SCC DFTB/3ob, E,F) SCC DFTB/mio and G,H) GFN2-xTB level in vacuum. Black line: ideal correlation. Red line: linear regression. Green dashed line: linear regression without the outlier 2-OH-AQ marked by a red dot.

Figure S9: Correlation between the experimentally measured first reduction potential and A) the electronegativity χ , B) hardness η , C) ionisation potential IP, D) electron affinity EA, calculated with B3LYP+D3/6-31++G(d,p).

Figure S10: Representation of the experimentally measured first reduction potential with electrostatic potential projected on an isodensity of the associated electron density (isovalue = 0.025) calculated with B3LYP+D3/6-31++G(d,p).