Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Nanostructure engineering of two-dimensional diamond towards high thermal conductivity and approaching zero Poisson's ratio

Yanxiao Hu¹, Ding Li¹, Chunbao Feng¹, Shichang Li¹, Bole Chen¹, Dengfeng Li¹*,

Gang Zhang²*

- 1. School of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
- 2. Institute of High Performance Computing, A*STAR, 138632, Singapore *Corresponding authors. E-mail: lidf@cqupt.edu.cn(D.F.Li); zhangg@ihpc.a-star.edu.sg (G. Zhang)

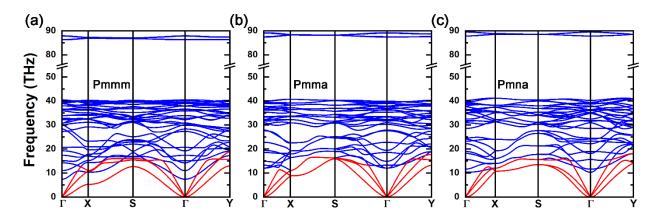


Fig.S1 The complete phonon dispersions of (a) Pmmm, (b)Pmma, (c)Pmna diamane.

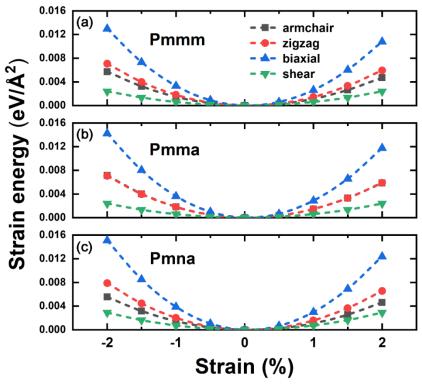


Fig.S2 The strain-energy vs. strain curves of (a) *Pmmm*, (b)*Pmma*, (c)*Pmna* diamane.

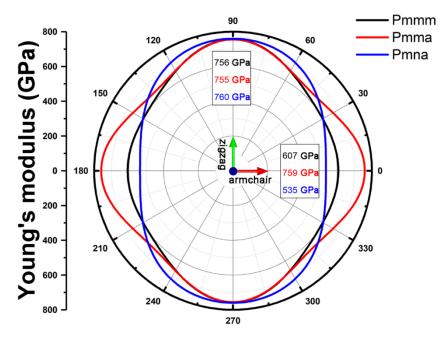


Fig.S3 The polar angle θ -dependent Young's modulus of rectangular diamanes in unit of GPa.