Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Three-Photon-Induced Singlet Excited-State Absorption for the Tunable Ultrafast Optical-Limiting in Distyrylbenzene: A First-Principles Study (Supporting Information)

Danyang Zhang¹, Hongjuan Zhu¹, Chunrui Wang², Shuying Kang³, Yong Zhou¹, Xiaowei Sheng^{1*}

 Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China and
State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033, China and
School of Physics and Electronic Information, Gannan Normal University

3. School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China

E-mail: xwsheng@mail.ahnu.edu.cn

B3LYP		ΔE	1	E2PA	δ_{2PA}	Езра		δ_{3PA}
State	eV	nm	eV	nm	<i>a.u.</i>	eV	nm	a.u.
S_I	3.27	379.20	1.64	756.10	0.00	1.09	1137.61	3.60E9
S_2	3.98	311.56	1.99	623.12	2.16E5	1.33	932.33	0.00
S_3	4.31	287.70	2.16	574.07	0.00	1.44	861.11	1.51E8
S_4	4.41	281.18	2.21	561.09	2.55E2	1.47	843.54	0.00
S_5	4.48	276.79	2.24	553.57	0.00	1.49	832.21	9.22E6
S_6	4.52	274.34	2.26	548.67	3.89E3	1.51	821.19	0.00
CAM-B3LYP	ΔE		I	E _{2PA}	$\delta_{\it 2PA}$	E_{3PA}		δ_{3PA}
State	eV	nm	eV	nm	<i>a.u.</i>	eV	nm	a.u.
S_{I}	3.66	338.80	1.83	677.60	0.00	1.22	1016.39	9.10E8
S_2	4.75	261.05	2.38	521.01	0.00	1.58	784.81	2.22E7
S_3	4.75	261.05	2.38	521.01	5.39E2	1.58	784.81	0.00
S_4	5.03	246.52	2.52	492.06	0.00	1.68	738.10	6.89E6
S_5	5.04	246.03	2.52	492.06	1.09E4	1.68	738.10	0.00
S_6	5.22	237.55	2.61	475.10	3.26E5	1.74	712.64	0.00

Table S1. Excitation energy ΔE , 2PA energy E_{2PA} , 2PA transition probability δ_{2PA} , 3PA energy E_{3PA} and 3PA transition probability δ_{3PA} for linear polarized light of the lowest six singlet excited states of DSB molecule in vacuum using different functionals under 6-311G(d,p) basis set.

Table S2. 2PA energy $E_{2PA}(eV)$, 2PA transition probability $\delta_{2PA}(a.u.)$, 3PA energy $E_{3PA}(eV)$ and 3PA transition probability $\delta_{3PA}(a.u.)$ for linear polarized light of the lowest six singlet excited states of molecules in vacuum at BHandHLYP/6-311G(d,p) level.

C 4-4-	DSB-1		DSB		DS	DSB+1		DSB+2		DSB+3	
State	E _{2PA}	δ_{2PA}	E _{2PA}	δ_{2PA}	E _{2PA}	$\delta_{\it 2PA}$		E _{2PA}	δ_{2PA}	 E _{2PA}	δ_{2PA}
S_{I}	2.17	0.00	1.82	0.00	1.66	0.00		1.58	0.00	1.53	0.00
S_2	2.59	0.00	2.39	1.21E3	2.09	9.27E2		1.91	8.18E2	1.80	7.41E2
S_3	2.60	2.09E2	2.43	0.00	2.32	9.66E5		2.19	2.10E6	2.06	0.00
S_4	2.95	6.20E2	2.55	1.94E5	2.41	0.00		2.23	0.00	2.12	3.53E6
S_5	3.06	0.00	2.56	0.00	2.42	3.26E4		2.39	0.00	2.32	0.00
S_6	3.08	1.75E4	2.59	1.22E5	2.48	0.00		2.41	0.00	2.39	0.00
DSB-1		DSB		D	DSB+1		DSB+2		DSB+3		
State	E _{3PA}	δ_{3PA}	Езра	δ_{3PA}	Езра	$\delta_{\scriptscriptstyle 3PA}$		Езра	δ_{3PA}	 Езра	δ_{3PA}
S_{I}	1.44	3.49E7	1.21	9.74E8	1.11	6.45E9		1.05	2.08E10	1.02	4.47E10
S_2	1.72	8.03E5	1.59	0.00	1.39	0.00		1.27	0.00	1.20	0.00
S_3	1.73	0.00	1.62	2.46E7	1.54	0.00		1.46	0.00	1.37	5.91E9
S_4	1.96	0.00	1.70	0.00	1.60	2.74E8		1.48	4.40E9	1.41	0.00
S_5	2.04	8.60E6	1.71	6.99E6	1.61	0.00		1.59	6.50E9	1.54	7.36E9
S_6	2.05	0.00	1.72	0.00	1.65	2.28E9		1.61	6.97E8	1.59	3.30E11

DSB				DSB trimer					
Atoms	Х	Y	Z	Atoms	Х	Y	Z		
C	-6.15848	3.892108	0	C	-8.07656	-1.02069	-2.98222		
С	-4.96229	3.204898	0	C	-6.68913	-1.02365	-2.94075		
C	-4.93791	1.808884	0	С	-6.00317	-1.42576	-1.78033		
С	-6.15848	1.135865	0	С	-6.763	-1.84234	-0.6769		
С	-7.35817	1.823785	0	C	-8.15247	-1.83789	-0.71837		
С	-7.36404	3.206475	0	C	-8.8177	-1.42471	-1.86933		
Н	-6.15285	4.968718	0	Н	-8.58522	-0.70719	-3.88681		
Н	-4.04167	3.761115	0	Н	-6.13487	-0.71765	-3.81972		
Н	-6.16289	0.058567	0	Н	-6.25533	-2.15093	0.227396		
Н	-8.28662	1.278943	0	Н	-8.71163	-2.15025	0.155393		
Н	-8.29492	3.746574	0	Н	-9.90085	-1.41975	-1.90491		
C	-0.00103	1.371431	0	C	-1.48459	-0.11814	-3.38734		
С	1.195712	0.69022	0	C	-0.10085	-0.08751	-3.35514		
C	1.227206	-0.70386	0	С	0.61436	-0.80588	-2.38105		
C	0.001028	-1.37143	0	C	-0.12847	-1.56302	-1.45895		
C	-1.19571	-0.69022	0	C	-1.5111	-1.59053	-1.48795		
С	-1.22721	0.703859	0	C	-2.2282	-0.86418	-2.45306		
Н	0.007273	2.448753	0	Н	-2.01265	0.441057	-4.15267		
Н	2.112218	1.253167	0	Н	0.427961	0.493862	-4.10062		
Н	-0.00727	-2.44875	0	Н	0.397919	-2.12845	-0.70154		
Н	-2.11222	-1.25317	0	Н	-2.03875	-2.18404	-0.75338		
C	6.158478	-1.13587	0	C	5.080119	0.959186	-3.63599		
С	7.358169	-1.82379	0	С	6.47094	0.994793	-3.62404		
C	7.364043	-3.20648	0	C	7.183963	0.081918	-2.8513		
С	6.158478	-3.89211	0	C	6.495049	-0.85348	-2.07801		
С	4.962293	-3.2049	0	С	5.108472	-0.88841	-2.08991		
С	4.937914	-1.80888	0	C	4.370361	0.012495	-2.87794		
Н	6.162887	-0.05857	0	Н	4.528417	1.666387	-4.24622		
Н	8.286621	-1.27894	0	Н	6.995699	1.731735	-4.22116		
Н	8.294921	-3.74657	0	Н	8.267521	0.098921	-2.84461		
Н	6.152849	-4.96872	0	Н	7.040763	-1.55394	-1.45991		
Н	4.041669	-3.76112	0	Н	4.596581	-1.62251	-1.48219		
C	-3.70508	1.022199	0	C	-4.54579	-1.4096	-1.66388		
С	-2.45717	1.490494	0	C	-3.68393	-0.8689	-2.54549		
C	2.457168	-1.49049	0	C	2.068921	-0.79233	-2.26978		
С	3.705084	-1.0222	0	С	2.91154	-0.00347	-2.96242		
Н	-3.8619	-0.04506	0	Н	-4.15759	-1.85556	-0.75305		
Н	-2.29984	2.557648	0	Н	-4.0799	-0.37358	-3.42813		
Н	2.299843	-2.55765	0	Н	2.473455	-1.47424	-1.52794		
Н	3.861896	0.04506	0	Н	2.497251	0.70618	-3.6736		

Table S3. Cartesian coordinates of DSB, DSB dimer and DSB trimer in S₀ state.

DSB dimer					7.623259	-3.57976	0.478255
Atoms	Х	Y	Z	C	6.281413	-3.2782	0.670534
С	-8.83481	-0.50537	-1.56268	C	5.889126	-2.02069	1.162003
С	-7.48981	-0.75592	-1.33081	С	6.890728	-1.07848	1.441047
С	-7.01965	-1.0349	-0.03576	С	8.233935	-1.38138	1.25032
С	-7.95692	-1.05998	1.009346	С	8.608361	-2.63328	0.768309
С	-9.30495	-0.80785	0.778675	Н	7.904173	-4.55181	0.089269
С	-9.7519	-0.52626	-0.50995	Н	5.530832	-4.01533	0.411732
Н	-9.17347	-0.28838	-2.56952	Н	6.608026	-0.09763	1.800324
Н	-6.79638	-0.72136	-2.16162	Н	8.984206	-0.63111	1.468567
Н	-7.61305	-1.26917	2.016649	Н	9.654155	-2.86987	0.61083
Н	-10.0063	-0.82969	1.605014	C	1.080614	-3.14459	1.728037
Н	-10.8008	-0.32689	-0.69509	C	-0.26588	-2.85734	1.880097
С	-2.22594	-1.38663	-1.30384	C	-0.72097	-1.52802	1.901391
С	-0.86951	-1.50754	-1.05946	C	0.240525	-0.51077	1.769861
C	-0.37909	-1.61859	0.251537	C	1.585435	-0.79644	1.622134
C	-1.32198	-1.59139	1.295375	C	2.041791	-2.12474	1.593557
С	-2.67906	-1.47826	1.050443	Н	1.405663	-4.17934	1.701023
С	-3.16999	-1.37748	-0.26104	Н	-0.9713	-3.67563	1.958692
Н	-2.57699	-1.29292	-2.32628	Н	-0.08613	0.520321	1.762978
Н	-0.18131	-1.49773	-1.8952	Н	2.283295	0.020863	1.50127
Н	-0.96866	-1.65863	2.319175	C	-5.48901	-2.5667	2.833079
Н	-3.3643	-1.44934	1.888265	C	-6.83601	-2.25368	2.989017
С	4.393315	-2.14789	-1.01135	C	-7.28693	-0.96384	2.720555
C	5.758941	-2.23144	-0.76475	C	-6.38133	0.006185	2.288631
C	6.242491	-2.10187	0.53281	C	-5.03841	-0.30485	2.135222
С	5.344531	-1.88571	1.578415	C	-4.56171	-1.59845	2.41208
C	3.980643	-1.8071	1.333122	Н	-5.14135	-3.57246	3.044175
C	3.473902	-1.94095	0.030025	Н	-7.53136	-3.0177	3.317525
Н	4.02188	-2.24187	-2.02657	Н	-8.33582	-0.71606	2.832867
Н	6.448925	-2.38128	-1.5866	Н	-6.72589	1.004249	2.054169
Н	7.307445	-2.13857	0.725264	Н	-4.3599	0.460007	1.781839
Н	5.714401	-1.77007	2.591053	C	4.490413	-1.64305	1.360407
Н	3.303877	-1.62402	2.158322	C	3.443063	-2.48682	1.412135
C	-5.61119	-1.25417	0.27841	C	-2.12619	-1.15299	2.012059
C	-4.58197	-1.22569	-0.58564	C	-3.15526	-1.97578	2.286628
C	1.035937	-1.73178	0.577806	Н	4.321607	-0.57744	1.484936
C	2.053174	-1.85229	-0.2929	Н	3.628557	-3.5545	1.330047
Н	-5.40727	-1.42561	1.330684	Н	-2.32225	-0.09589	1.859005
Н	-4.78521	-1.05514	-1.63823	Н	-2.95256	-3.02816	2.466348
Н	1.256115	-1.71133	1.640723	C	-7.07432	3.5108	1.07893
Н	1.83097	-1.88919	-1.35494	C	-5.69168	3.407082	1.002164
С	8.834703	0.504516	-1.56261	C	-5.08574	2.577186	0.041767

C	7.489751	0.755386	-1.33082	C	-5.92042	1.871766	-0.83832
С	7.019633	1.034791	-0.03584	С	-7.30449	1.96517	-0.75533
С	7.956909	1.059979	1.009259	С	-7.88896	2.787022	0.20468
С	9.304891	0.807531	0.778661	Н	-7.52186	4.157195	1.825359
С	9.751798	0.525505	-0.50988	Н	-5.0803	3.978622	1.689641
Н	9.173323	0.287195	-2.56939	Н	-5.46965	1.225477	-1.57858
Н	6.79632	0.720736	-2.16162	Н	-7.91892	1.38442	-1.43194
Н	7.613077	1.269482	2.01651	Н	-8.96758	2.864822	0.275392
Н	10.00624	0.829457	1.604998	С	-0.4235	3.19887	1.658535
Н	10.80066	0.32587	-0.69497	С	0.955042	3.0894	1.587466
C	2.225986	1.386875	-1.30405	C	1.576624	2.53206	0.456506
С	0.869551	1.507727	-1.05968	С	0.745441	2.111542	-0.59635
С	0.379116	1.61864	0.251325	С	-0.63244	2.207052	-0.52115
С	1.321982	1.591379	1.295177	С	-1.25557	2.752657	0.614149
С	2.679067	1.478325	1.050245	Н	-0.87815	3.636285	2.541035
С	3.170014	1.37764	-0.26124	Н	1.553292	3.450599	2.414833
Н	2.577058	1.293237	-2.32649	Н	1.2006	1.680824	-1.47699
Н	0.181342	1.497934	-1.89542	Н	-1.22471	1.850333	-1.35366
Н	0.968644	1.658479	2.318978	С	6.139451	2.580031	2.386121
Н	3.364289	1.449234	1.888072	С	7.528418	2.515902	2.357776
С	-4.39334	2.147928	-1.01147	С	8.188322	2.281563	1.154028
С	-5.75897	2.231414	-0.76484	С	7.444587	2.097108	-0.01199
C	-6.24246	2.102071	0.532761	С	6.058394	2.153117	0.015018
C	-5.34444	1.886197	1.578379	С	5.376148	2.407458	1.218236
C	-3.98056	1.80765	1.333051	Н	5.628919	2.770199	3.32411
C	-3.47388	1.94124	0.029903	Н	8.093171	2.651817	3.272798
Н	-4.02195	2.241731	-2.02673	Н	9.270651	2.237086	1.123126
Н	-6.449	2.381037	-1.58669	Н	7.945838	1.896764	-0.94959
Н	-7.30741	2.138769	0.725258	Н	5.509494	1.993374	-0.90416
Н	-5.71427	1.770789	2.59106	С	-3.63866	2.404352	-0.08044
Н	-3.30376	1.624809	2.158275	С	-2.70103	2.892922	0.752684
C	5.611204	1.25434	0.278291	С	3.021675	2.362855	0.329435
C	4.581986	1.225717	-0.58575	C	3.922804	2.524143	1.31641
С	-1.03593	1.731701	0.5776	Н	-3.32596	1.801743	-0.92813
C	-2.05315	1.852617	-0.29305	Н	-3.01799	3.452336	1.628563
Н	5.407305	1.426085	1.33052	Н	3.361572	2.059823	-0.65669
Н	4.785256	1.054785	-1.63827	Н	3.563795	2.779856	2.309595
Н	-1.25612	1.710772	1.6405				
Н	-1.83094	1.88992	-1.35509				