Destructive Mechanism of $A\beta_{1-42}$ Protofibril by Norepinephrine revealed via Molecular Dynamics Simulations

Duo Gao^a, Jiaqian Wan^a, Yu Zou^b, Yehong Gong^c, Xuewei Dong^d, Zhengdong Xu^a, Jiaxing Tang^a, Guanghong Wei^{d, *} and Qingwen Zhang^{a, *}

a School of Physical Education, Shanghai University of Sport, Shanghai 200438, People's Republic of China

b Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, People's Republic of China

c School of Sports Science and Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, People's Republic of China

d Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China

Corresponding Author

- * E-mail: ghwei@fudan.edu.cn (G.W.)
- * E-mail: zqw@sus.edu.cn (Q.Z.)

This material contains four figures: the correlations between $A\beta_{1-42}$ protofibril experimental NMR chemical shift (C_{α}/C_{β} atoms) and simulated chemical shift data (Figure S1), the J-coupling (${}^{3}J(H_{N},H_{\alpha})$) constants values of $A\beta_{42}$ residues calculated from 5OQV and those from simulationgenerated conformational ensembles of $A\beta_{1-42}$ protofibril system (Figure S2), the secondary structure probabilities of $A\beta_{1-42}$ protofibril in the $A\beta$ and $A\beta+NE^{0}$ systems (Figure S3), the average number of π - π stacking between the aromatic residues of $A\beta_{1-42}$ protofibril and NE⁺/NE⁰ (Figure S4), and the interchain contact number of $A\beta_{1-42}$ protofibril in the absence and presence of NE (in protonated and deprotonated states) (Figure S5).

Figure S1. Conformational comparison between experimental data and simulated data. (a–b) Correlations between experimental NMR chemical shift data for C_{α} and C_{β} atoms and simulated chemical shift data for the A β_{1-42} protofibril system.

Figure S2. The J-coupling $({}^{3}J(H_{N},H_{\alpha}))$ constants values of A β_{42} residues calculated from 5OQV and those from simulation-generated conformational ensembles of A β_{1-42} protofibril system.

Figure S3. Secondary structure probabilities of $A\beta_{1-42}$ protofibril in the $A\beta$ and $A\beta$ +NE⁰ systems.

(a)

Figure S4. The LS-shaped configuration of $A\beta_{1-42}$ protofibril shown in (a). The ABCD is used to indicate four chains of $A\beta_{1-42}$ protofibril. (b) The interchain contact number of $A\beta_{1-42}$ protofibril in the absence and presence of NE (in protonated and deprotonated states). The interchain contact were averaged over the three pairs of neighboring chains (i.e. chain A-chain B, chain B-chain C and chain C-chain D).

Figure S5. Average number of π - π stacking between the aromatic residues of A β_{1-42} protofibril and NE⁺/NE⁰.