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Appendix A: INPUT-OUTPUT FORMALISM

Using the initial Hamiltonian

Consider the initial Hamiltonian describing a transmission line with two ports, coupled to the topological system via
the cavity photons. The total Hamiltonian is:

H = Ωd†d+HS + g
(
d† + d

)
Z +HB , (A1)

with HB being the Hamiltonian for the electromagnetic field in the transmission line and its coupling to the cavity,

HB =
∑
l=1,2

∫ ∞
−∞

ωb†l (ω) bl (ω) dω + i
∑
l=1,2

∫ ∞
−∞

[
µl (ω) b†l (ω) d− µl (ω)

∗
d†bl (ω)

]
dω (A2)

where l = 1, 2 represent the left/right sides of the cavity, bl (ω) is the destruction operator for a photon with energy
ω at side l of the cavity and µl(ω) represents the coupling between the cavity and the outside modes. In this work,
we will consider the Markov approximation, which gives µl (ω) =

√
κl/2π.

Then, the first step is to derive the equation of motion (EoM) for the transmission line photons:

d

dt
bl (ν, t) = −iνbl (ν, t) +

√
κl
2π
d (t) (A3)

which can be formally integrated to yield

bl (ν, t) = bl (ν, t0) e−iν(t−t0) +

√
κl
2π

∫ t

t0

dt′e−iν(t−t
′)d (t′) (A4)

where t0 < t represents the initial condition. Inserting the previous expression into the EoM for the cavity photons,
we get

d

dt
d (t) = −iΩd (t)− igZ(t)−

∑
l=1,2

√
κl
2π

∫ ∞
−∞

dνbl (ν, t)

= −i
(

Ω− iκ
2

)
d (t)− igZ (t)−

∑
l=1,2

√
κlbin,l (t) (A5)

where κ = κ1 + κ2, and we have defined an input field,
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bin,l (t) =
1√
2π

∫ ∞
−∞

bl (ν, t0) e−iν(t−t0)dν. (A6)

Similarly, the solution for bl (ν, t) in (A4) can also be obtained in terms of a final condition t1 > t, which let us define
an output field bout,l (t), fulfilling

bout,l (t) = bin,l (t) +
√
κld (t) (A7)

One has to solve the EoM for Z (t) as well. We consider the basis of eigenstates of the fermionic Hamiltonian

HS =

N∑
α=1

EαX
α,α, Z =

∑
~α

Z~αX
~α (A8)

with X~α = Xα1,α2 = |α1〉〈α2|, and calculate the equation of motion for an arbitrary Hubbard operator X~α

∂tX̃
~α(t) = i

(
Ẽ~α − i

γ

2

)
X̃~α(t) + ig

(
d†(t) + d(t)

)∑
β

(
Z̃β,α1

X̃β,α2(t)− Z̃α2,βX̃
α1,β(t)

)
, (A9)

where E~α = Eα1
−Eα2

and we have also included the phenomenological spectral broadening factor γ/2. The product
d(†) (t)X (t) can be decomposed as

d(†) (t)X (t) ≈ 〈X〉d(†) (t) + 〈d(†)〉X(t), (A10)

where we are neglecting any terms accounting for correlation between operators, which is a valid approach in the
small-g regime. Under this condition, one can safely calculate 〈X〉 and 〈d(†)〉 using the corresponding unperturbed
Hamiltonians, HS and Ωd†d, respectively. Then, one can easily see that 〈d(†)〉 = 0 , and hence the solution for the
EoM in (A9) in frequency space reads

X~α (ω) ' gd (ω)

∑
β

(
Zα2,β〈Xα1,β〉 − Zβ,α1

〈Xβ,α2〉
)

ω + E~α − iγ2
. (A11)

We have also neglected the contribution of 〈X〉d† (ω), as typically done in the literature [1]. Substituting this result
in (A5), we find

d (ω) =
i
∑
l=1,2

√
κlbin,l (ω)

Ω− ω − iκ2 + g2χ (ω)
(A12)

where

χ (ω) =
∑
~α,β

Z~α
(
Zα2,β〈Xα1,β〉 − Zβ,α1

〈Xβ,α2〉
)

ω + E~α − iγ2
. (A13)

Using (A7), and taking into account that the input is inserted through the left port (l = 1) into the cavity, and the
output is collected through the right one (l = 2), we can write the transmission as
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tc (ω) =
〈bout,2〉
〈bin,1〉

=
i
√
κ1κ2

Ω− ω − iκ2 + g2χ (ω)
(A14)

which is the usual result for the cavity transmission, with χ (ω) being the electronic susceptibility.

Using the mean-field Hamiltonian

If we instead consider the MF Hamiltonian for the cavity, topological system and their interaction, we start from the
following expression

H = Ωd†d− g2〈Z〉2
Ω

+ H̃MF,S + g
(
d† + d

)
Z̃

+
∑
l=1,2

∫ ∞
−∞

ωb†l (ω) bl (ω) dω

+i
∑
l=1,2

√
γl
2π

∫ ∞
−∞

dω

[
b†l (ω)

(
d− g〈Z〉

Ω

)
−
(
d† − g〈Z〉

Ω

)
bl (ω)

]
(A15)

where Z̃ = Z − 〈Z〉 and H̃MF,S = HMF,S − 2g2〈Z〉
Ω Z. Note that the cavity operators have been rotated to d̃(†) =

d(†) − g〈Z〉
Ω in order to diagonalize their MF Hamiltonian. The self-consistent values of 〈Z〉 and 〈d(†)〉 have been

determined ignoring the coupling to the transmission line, as explained in the main text. Importantly, the cavity
operators in HB have also been rotated accordingly. This time, the EoM for bl (ν, t) yields the following solution

b̃l (ν, t) = bl (ν, t)−
g〈Z〉

Ω

√
κl
2π

1− e−iν(t−t0)

iν
(A16)

Compared to (A4), we have an extra term due to the rotation of the bosonic operators, that depends on the state of
the fermionic system through 〈Z〉. The EoM for d (t) has the same form, with redefined input and output fields

b̃in,l (t) = bin,l (t)−
g
√
κl〈Z〉

2πΩ

∫ ∞
−∞

1− e−iν(t−t0)

iν
dν, (A17)

b̃out,l (t) = bout,l (t) +
g
√
κl〈Z〉

2πΩ

∫ ∞
−∞

1− eiν(t1−t)

iν
dν, (A18)

also fullfilling that b̃out,l (t) = b̃in,l (t) +
√
κld (t). On the other hand, the Hubbard operators change as well due to

the presence of the extra MF contribution in the fermionic Hamiltonian

H̃S = HS −
2g2〈Z〉

Ω
Z =

N∑
α=1

ẼαX̃
α,α, (A19)

Z̃ =
∑
~α

Z̃~αX̃
~α. (A20)
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The EoM for X̃ has the same form of (A9), but substituting the eigenvalues and eigenvectors of the unperturbed
fermionic Hamiltonian HS by the ones of MF Hamiltonian H̃S . To solve the EoM, we take fluctuations to be small,
which is a valid assumption when g is both small and very large, i.e., when the MF Hamiltonian H̃S + H̃Ω accurately
describes the physics of the system, without considering the fluctuations Hamiltonian H̃δ. Under this condition,
we can write d(†) (t) X̃ (t) ≈ 〈X̃〉d(†) (t) + 〈d(†)〉X̃(t). Again, we neglect any correlation created by the fluctuations
Hamiltonian, which acts as an effective interaction between the two MF Hamiltonians. Note that 〈d(†)〉 = 0 when
evaluated using the MF photonic Hamiltonian in the rotated frame, H̃Ω.
Formally, the decoupling employed to solve (A20) is the same as the one used in (A9). Then, the solution for X̃ gives

X̃~α(ω) ' gd (ω)

∑
β

(
Z̃α2,β〈X̃α1,β〉 − Z̃β,α1

〈X̃β,α2〉
)

ω + Ẽ~α − iγ2
. (A21)

Note that (A13) is analogous to (A21), but all parameters have been renormalized due to MF. Finally, the transmission
can be written as

tc (ω) =
i
√
κ1κ2

Ω− ω − iκ2 + g2χ̃ (ω)
. (A22)

where now χ̃ (ω) is the susceptibility written in terms of the MF Hamiltonian.

Appendix B: TRANSMISSION AND PHOTONIC GREEN’S FUNCTION

The starting point is the EoM for the photonic operator d(t) (A5) in Fourier space

iωd (ω) = −i
(

Ω− iκ
2

)
d (ω)− ig

∑
~α

Z~αX̃
~α (ω)−

∑
l=1,2

√
κlb̃in,l (ω) (B1)

The losses of the cavity have been included through the phenomenological factor κ. This equation depends on X̃~α (ω),
which has its own dynamics as well,

iωX̃ij(ω) = −i
(
Ẽj − Ẽi + i

γ

2

)
X̃ij(ω)

−ig
(
d†(ω) + d(ω)

)∑
m

(
ZjmX̃

im(ω)− ZmiX̃mj(ω)
)
. (B2)

Solving this equation implies writting the EoM for d(†)X̃ij , which at the same time is coupled to higher-order operators.
Then, we can write an infinite vector with all the relevant operators involved, ~v =

(
d,Xij , ...

)
, and the system of

equations turns out to be

(ω −A)~v = ~v0 (B3)

where A is the coefficients matrix and ~v0 represents the inhomogeneous term.

Then, on the other hand, we can write the EoM for the retarded photonic Green function, defined as G (t) =
−iθ (t) 〈

[
d (t) , d†

]
〉 ≡ 〈〈d(t); d†〉〉t, yielding

ωG (ω) = 1 +
(

Ω− iκ
2

)
G̃ (ω) + g

∑
ij

Mij (ω) (B4)
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where M̃ij (ω) = 〈〈Xij ; a†〉〉ω. Note that the dissipative factor enters the EoM for G(ω) through the integration of the
external modes and their coupling to the cavity photons, just as in Eq. A5. Again, this EoM is coupled to higher-order
Green functions, resulting in an infinite system of coupled differential equations. In matrix form, we have

(ω −A′) ~V (ω) = ~V0 (B5)

where ~V = (G,Mij , ...) and ~V0 is the inhomogeneous term by comparison. One can see that A = A′, which indicates
that G (ω) = −iθ (t) 〈

[
a (t) , a†

]
〉 is the resolvent of (B1).

Finally, we can compare the first component of each system of equations, namely a (ω) =

−i (ω −H)
−1∑

l=1,2

√
κlb̃in,l (ω) and G (ω) = (ω −H)

−1, and see that

a (ω) = −iG (ω)
∑
l=1,2

√
κlb̃in,l (ω) . (B6)

The last step is to write the transmission as a function of a (ω), knowing that b̃out,l (t) = b̃in,l (ω) +
√
κla (ω) and that

the only input is through port 1

tc =
〈b̃out,2〉
〈b̃in,1〉

=
〈b̃in,2〉+

√
κ2〈a〉

〈b̃in,1〉
= −i√κ2

√
κ1G (ω) . (B7)

It is very enlightening to obtain an analytical expression for the photonic Green function in the case of g � Ω, Ẽ~α
and g � Ω, Ẽ~α. The equation of motion of G(ω) (Eq. B4) is coupled to the mixed Green function M̃ij , which gives

ωM̃ij = (Ẽj − Ẽi)M̃ij +
∑
l

Zjl〈〈(d† + d)X̃il; d†〉〉ω

−
∑
l

Zli〈〈(d† + d)X̃ lj ; d†〉〉 (B8)

Note the presence of the higher-order Green function 〈〈(d† + d)X̃; d†〉〉. Fluctuations are negligible in the small and
very-large coupling regimes, which let us employ the following decoupling scheme

〈〈(d† + d)X̃; d†〉〉 ≈
(
〈d†〉+ 〈d〉

)
〈〈X̃; d†〉〉ω + 〈X̃〉〈〈d; d†〉〉ω (B9)

This approximation is analogous to the decoupling scheme d(†) (t) X̃ (t) ≈ 〈X̃〉d(†) (t) + 〈d(†)〉X̃(t) presented in the
main text used to solve the EoM for the photonic operator. Again, it implies that we are neglecting first-order
correlations between fermionic and photonic operators, and under this assumption the system of equations including
Eqs. B4 and B8 can be closed and solved, obtaining

G (ω) = − 1

Ω− ω + g2χ̃ (ω)
. (B10)

for the photonic Green function. It is straight-forward to see that the previous expression verifies the relation
between the transmission and G(ω) presented in Eq. 13 in the main text, when compared with Eq. 10 in the limits
of g � Ω, Ẽ~α and g � Ω, Ẽ~α. Note that the phenomenological factors have to be added as well.
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Figure SM1: 〈Z〉 for different N. 〈Z〉 as a function of the coupling constant g for Ω = 10, δ = ±0.6 (trivial/topological
phase) and different system sizes: N = 40 (top), N = 20 (middle), N = 12 (bottom). The value of 〈Z〉 has been calculated
self-consistently using the MF Hamiltonian (solid) and exact diagonalization (dashed-dotted line). The chain size modifies the
value of the critical point at which the system polarizes, enhancing or reducing the difference between topological phases at
the phase transition

Appendix C: SOLUTION FOR 〈Z〉

In this section we compare the solution of 〈N〉 for different system sizes N . Fig. SM1 shows 〈Z〉 as a function of g for
the MF case and the exact one, as in the main text, but including different chain lengths: N = 12, 20 and 40. The
main features that are commented on the main text are still present; however, we can see that changes in N modify
the critical value at which the system polarizes, enhancing or reducing the difference between topological phase at the
transition, as well as the final value in the limit g → ∞. Also, as the number of sites N increases, the critical value
of g at which the phase transition happens is reduced (see Fig. SM1). This is expected, since the effective strength
of the coupling at each site gi = gxi gets larger as more sites are considered.

Appendix D: TOPOLOGICAL DETECTION IN THE SMALL COUPLING REGIME OCCUPYING AN
EDGE STATE

We have shown that the cavity transmission cannot act as a topological marker if the lowest-energy state is occupied.
On the contrary, if the edge state is initially occupied in the topological phase, the transmission peak at ω = Ω should
remain unaffected by the interaction, as opposed to the behaviour of the trivial phase, in which changes in tc are
expected. This assymetry between phases can be maximized if the cavity frequency Ω is resonant with an electronic
transition E~α (eigenenergy of the unperturbed fermionic Hamiltonian HS) and in particular, with the gap of the
chain. While the transmission for the non-trivial topological phase does not change compared to the uncoupled cavity
transmission (the bulk states are decoupled from the edge states), the presence of a direct resonance in the trivial
phase results in a Rabi splitting: the peak of maximum transmission divides into two distinct modes, separated by
the Rabi frequency Ωr [2], which is often detected in experiments and indicates that the regime g > {κ, γ} is achieved
[3–7].

This is shown in Fig. SM2. We consider the top state in the valence band is occupied for the trivial phase, while the
edge state is occupied for the topological phase. This choice is motivated by the fact that both states are adiabatically
connected across the topological phase transition, as δ is varied from negative to positive values. While the decoupling
between bulk and edge states explains the absence of any changes in tc for the topological phase, a Rabi splitting
appears for the trivial phase. The analytical approximation captures the position of each peak in ω (as indicated by the
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Figure SM2: |tc (ω)| as a function of ω. Dashed lines indicate the analytical approximation (Eq. 13), while solid lines
correspond to the exact solution (Eq. 10). We consider the (N/2)-th state occupied, corresponding to the edge state in the
topological phase and the top of the valence band in the trivial phase. The parameters used are: Ω = 3.7, g = 0.06, δ = ±0.925
(trivial/topological phase, in blue/red, respectively), N = 20, γ = κ1 = κ2 = 0.01.

dashed, grey vertical lines), as well as their relative height, though the exact shape of the peaks is not reproduced. This
disagreement can be explained by correlated excitations that strongly modify the system due to resonant conditions.

In conclusion, for the small-g regime it is important to stress that detection of the topological phase requires the system
to be initialized in an edge state. Otherwise the cavity transmission cannot differentiate between the two phases. One
disadvantage of this regime of operation is that the measurement needs to be carried out before thermalization
happens, but this could be avoided by filling the fermionic system to half-filling (however, in this case many systems
require to account for particle interactions as well).

Appendix E: SCHRIEFFER-WOLFF TRANSFORMATION

We begin with the Hamiltonian H = H̃S + H̃Ω + H̃δ, as defined in the main text, written in the basis of eigenstates
of H̃S :

H =
∑
i

ẼαX̃
α,α + Ωd†d− g2〈Z〉

Ω
+ g(d† + d)Z̃ (E1)

We propose the following ansatz for the generator S of the Schrieffer-Wolff (S-W) transformation,

S =
∑
~α

(
Γ+
~αd
† + Γ−~αd

)
X̃~α (E2)

where ~α = (α1, α2). Imposing H̃δ = −[S, H̃S + H̃Ω], one finds the following equations for the free parameters:

Γ±~α =
gZ̃~α

Ẽ~α ± Ω
. (E3)

with Ẽ~α = Ẽα1 − Ẽα2 . This results in the final form of the transformation:

S = g(d† + d)
∑
~α

Ẽ~αZ̃~α

Ẽ2
~α − Ω2

− gΩ(d† − d)
∑
ij

Z̃~α

Ẽ2
~α − Ω2

X̃~α (E4)

The correction to the Hamiltonian is proportional to:
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[
S, H̃δ

]
= g2(d† + d)2

∑
~α

Ẽ~αZ̃~α

Ẽ2
~α − Ω2

Y −~α − g2Ω(d†2 − d2)
∑
~α

Z̃~α

Ẽ2
~α − Ω2

Y −~α + g2Ω
∑
~α

Z̃~α

Ẽ2
~α − Ω2

Y +
~α (E5)

with

Y ±~α =
∑
β

(Z̃α2βX̃
α1β ± Z̃βα1X

βα2) (E6)

Finally, one can write the effective Hamiltonian up to second order, neglecting two-photon processes and constant
terms,

H̄ ' H̃S + Ωd†d+
1

2
[S, H̃δ] =

∑
α

ẼαX̃
α,α +

g2

2

∑
~α

Z̃~α

[∑
β Z̃α2βX̃

α1β

Ẽ~α − Ω
−
∑
n Z̃βα1

X̃βα2

Ẽ~α + Ω

]

+

[
Ω + g2

∑
~α

Ω̃~αỸ
−
~α

]
d†d. (E7)

where Ω̃~α is defined in the main text.

Appendix F: ENTANGLEMENT ENTROPY AND ENERGY SPECTRUM

As shown in Fig. 5(c) in the main text, there is a log (2)-plateau in the topological phase for small-g when the N/2-th
state is occupied, corresponding to one of the topological edge states. Its drop at g ∼ 0.84 corresponds with its
anti-crossing with a state belonging to the bulk bands and indicates the destruction of maximal entanglement for the
N/2-th state.

However, the topological contribution to the entanglement entropy is not lost at this point, but migrates from one
state to the other as they further anti-cross in the energy spectrum. Figure SM3 shows a zoom of the energy spectrum
where the edge states penetrate into the bulk bands, together with the entanglement entropy SA associated to the
occupation of each of them. For small-g, the log (2) plateau corresponds to the N/2-th (red) and (N/2 + 1)-th (light
brown) states (edge states), while the rest of them are not maximally entangled (their SA depends on the partition
used). The first anti-crossing encountered in the spectrum (at g ∼ 0.78) between the light brown and blue (top state
in the valence band) states, corresponds to the appearance of a log (2)-plateau for the later, while the entanglement
between the ending sites is lost for the edge state.

On the other hand, as g is increased, the N/2-th state anti-crosses with other states as well. Figure SM4 shows that
each of these anti-crossings correspond to the abrupt changes in SA obtained for the N/2-th state (Fig. 5(c)), by
zooming into the first four of them.
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Figure SM3: Entanglement entropy and the energy spectrum. Left plot: zoom into the energy spectrum, as a function
of g, corresponding to the anti-crossing (dashed, grey vertical lines) of energy states triggered by the entrance of the edge states
into the bulk band. The parameters chosen are: Ω = 10 δ = −0.6, N = 20. Each state is depicted in a different color: light
brown for the

(
N
2

+ 1
)
-th state, red for the N/2-th (corresponding to the two edge states), blue for the

(
N
2
− 1

)
-th (top state

in the valence band), orange for the
(
N
2
− 2

)
-th, green for the

(
N
2
− 3

)
-th and violet for the

(
N
2
− 4

)
-th (the following states

appear in black). The first anti-crossing at g ∼ 0.78 happens between the edge state (light brown) and the top state in the
valence band (blue). The second anti-crossing at g ∼ 0.9 happens between the edge state (red) and

(
N
2
− 2

)
-th state in the bulk

band (orange). For higher values of the coupling constant (only shown up to g = 1), sucessive anti-crossings between adjacent
states appear. Right plot: entanglement entropy for each state (same color code as in the left plot), for different partitions
N = 4 (upper plot) and N = 6 (lower plot). For small-g, the log (2) plateau corresponds to the N/2-th state, while the rest of
them are not maximally entangled (their SA depends on the partition used). Each time a state from the bulk band anti-crosses
with an edge state, it turns into an edge state itself, so that the log (2) plateau (originally caused by the non-trivial topology
of the fermionic system) migrates from one state to the other.
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Figure SM4: Anti-crossings for theN/2th state in the topological phase. Left plot: energy spectrum for the zero-photon
band as a function of g. The N/2-th state (for which the entanglement entropy is calculated in Fig. 6(c)) is represented in
orange. The green, dashed lines represent the first four anti-crossings for this state, which correspond to the first four abrupt
changes in SA in Fig. 6(c). Right plots: zoom into the first four anti-crossings of the N/2-th state.
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