Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supplementary Information for: Neural network-based pseudopotential: development of a transferable local pseudopotential

Jeheon Woo,
† Hyeonsu Kim,
† and Woo Youn Kim*,
†

[†]Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea * Email: wooyoun@kaist.ac.kr

1 The parameters for NNLP optimization

For the sake of simplicity, we used the same set of many adjustable parameters for all elements. w_1 , w_3 , and w_4 were set to 100, 10, and 10 for all elements, respectively. Only r_c , r_t , d_{\max} , and w_2 were set differently for each element. r_c was set as the radius at the outermost maximum of the valence wavefunctions of all-electron calculations, and the train radius r_t was chosen to be 0.5 bohr larger than r_c . w_2 was optimized differently for each element to decrease the sum of errors in eigenvalues using the Bayesian optimization method. d_{\max} was used as 10 or 30 for all elements. The detailed values for r_c , d_{\max} , and w_2 are shown in Table S1.

1	0		
Element	r_c (Å)	$d_{\rm max}$	w_2
Li	3.1311	10	6.1640
Be	2.0497	10	19.4152
В	1.5629	10	19.3460
С	1.1900	10	1.0000
Na	3.2482	10	3.0989
Mg	2.5171	10	13.3235
Al	2.6407	10	18.5779
Si	2.1403	10	35.0619
Р	1.8293	30	36.8689
\mathbf{S}	1.5959	30	36.8677
Cl	1.4202	10	10.3095
Ar	1.2887	10	1.0052
Κ	4.0211	10	3.8104
\mathbf{Ca}	3.3343	10	5.0384
Ga	2.5244	10	6.1550
Ge	2.2040	10	6.2662
As	1.9729	10	13.3238
Se	1.7961	30	3.5700
Br	1.6630	30	18.0291
Kr	1.5411	10	12.2823

Table S 1: Input parameters to generate the NNLP of each element.

2 Effect of the unbound d-state on the accuracy in bulk property calculations

For elements with unbound d-states, the p-d coupling may be overestimated in bulk structures if the d-state is not properly considered. So, the reliable NCPPs of these elements should be generated such that the d-state becomes an unbound state. We generated NCPPs for Ga and Ge by considering only the s- and p-states like in the case of NNLP in this work. Here, r_c was set to the same value with that of NNLP for each element. And bulk properties were calculated by KS-DFT with these NCPPs (NCPP^{*} in Table S2), and compared the results with those of NNLP.

System	PP	$V_0 (\text{\AA}^3)$	B_0 (GPa)	B_0'	E_c (eV)
	NCPP	20.11	53.1	5.21	-3.178
Ga orthorhombic	$NCPP^*$	15.91	86.8	4.78	-3.993
	NNLP	15.22	90.3	4.92	-4.057
	NCPP	23.20	65.0	4.82	-4.489
Ge diamond	$NCPP^*$	20.78	81.9	4.69	-5.001
	NNLP	20.88	77.9	4.46	-4.942

Table S 2: Bulk properties calculated by KS-DFT with NCPP, NCPP*, and NNLP. LDA was used as the exchange-correlation functional.

3 Electronic configuration test

To evaluate the transferability of NNLPs to other electronic configuration test, we performed atomic calculations for the following three electronic configurations: the ground, excited, and cationic states. The excited states were selected as the state in which one electron has transitioned from the s-state to the p-state. For Li and Na, $2s^{0.5}2p^0$ and $3s^{0.5}3p^0$ configurations were used as the cationic states, respectively, because they have only one valence electron in the ground state. For all evaluated elements, spin-unpolarized calculations were performed.

Table S 3: The eigenvalues and excitation energies for the three electronic configurations calculated by all-electron potential, NNLP, OEPP, and BLPS.

Element	Configuration		AE (eV)	NNLP (eV)	OEPP (eV)	BLPS (eV)
	$2s^12p^0$	ε_0	-2.877 -1.128	-2.878 -0.738	-3.416 -0.364	-2.976 -0.740
	- 5 - P	ΔE	0.000	0.000	0.000	0.000
		ε_0	-3.344	-3.657	-3.344	-3.802
Li	$2s^02p^1$	ε_1	-1.583	-1.492	-1.519	-1.538
		ΔE	1.704	2.173	5.598	2.203
	9 = 0.59 = 0	ε_0	-0.322 -3.364	-0.288 _2.662	-0.049 -2.387	-0.440 -2.660
	25 2p	ΔE	-3.304 2.045	2.039	-2.387 2.476	2.102
		ε_0	-5.606	-5.598	-6.018	N/A
	$2s^22p^0$	ε_1	-2.105	-0.893	-0.632	N/A
		ΔE	0.000	0.000	0.000	N/A
		ε_0	-6.141	-7.284	-8.321	N/A
Be	$2s^12p^1$	ε_1	-2.604	-2.018	-1.927	N/A
		ΔE	3.519	4.984	5.909	N/A
		ε_0	-13.647	-13.578	-14.795	N/A
	$2s^12p^0$	ε_1	-9.824	-7.193	-7.004	N/A
		ΔE	9.520	9.490	10.281	N/A
	1 0	ε_0	-2.823	-2.810	-2.814	N/A
	$3s^13p^0$	ε_1	-0.774	-0.777	-0.786	N/A
		ΔE	0.000	0.000	0.000	N/A
	0.1	ε_0	-3.698	-3.733	-3.728	N/A
Na	$3s^03p^1$	ε_1	-1.495	-1.503	-1.506	N/A
		ΔE	2.120	2.124	2.117	N/A
		ε_0	-5.217	-5.224	-5.224	N/A
	$3s^{0.5}3p^0$	ε_1	-2.676	-2.674	-2.686	N/A
		ΔE	2.003	2.000	2.002	N/A
	a 2a 0	ε_0	-4.787	-4.805	-4.821	-4.806
	3s ² 3p ^o	ε_1 ΛF	-1.377	-1.372	-1.267	-1.338
		ΔE	0.000	0.000	0.000	0.000
λſ	0 10 1	ε_0	-5.770	-5.784	-5.920	-5.832
Mg	3s ¹ 3p ¹	ε_1	-2.129	-2.135	-2.087	-2.123
		ΔE	5.525	5.040	5.092	3.300
	a 1a 0	ε_0	-11.527	-11.467	-11.597	-11.498
	$3s^{+}3p^{\circ}$	ε_1	-7.164	-7.085	-6.953	-7.023
		ΔE	8.074	8.068	8.134	8.080

		ε_0	-7.836	-8.056	-8.084	-8.197
	$3s^23p^1$	ε_1	-2.789	-2.785	-2.639	-2.707
		ΔE	0.000	0.000	0.000	0.000
		ε_0	-8.669	-8.955	-9.085	-9.182
Al	$3s^13p^2$	ε_1	-3.411	-3.444	-3.337	-3.402
	1	ΔE	5.155	5.396	5.602	5.640
		εο	-15.724	-15.931	-16.022	-16.192
	$3s^13p^1$	ε ₁	-9.849	-9.757	-9.556	-9.700
		ΔE	11.666	11.892	11.942	12.085
		ε_0	-10.884	-11.505	-11.838	-11.892
	$3s^23p^2$	ε ₁	-4.169	-4.167	-3.881	-4.081
		ΔE	0.000	0.000	0.000	0.000
		εο	-11.639	-12.390	-12.924	-12.892
Si	$3s^13p^3$	ε ₁	-4.746	-4.810	-4.596	-4.774
	0 oF	ΔE	6.807	7.462	8.148	7.969
		εn	-19.109	-19.647	-19.871	-20.073
	$3s^23p^1$	ε ₁	-11.753	-11.581	-11.073	-11.464
	ob op	ΔE	7.829	7.758	7.354	7.653
		<u></u> £0	-14.021	-15.142	-16.159	-15.649
	$3s^23p^3$	ε ₁	-5.603	-5.598	-5.177	-5.483
	0 of	ΔE	0.000	0.000	0.000	0.000
		εo	-14.728	-16.022	-17.366	-16.676
Р	$3s^13n^4$	E1	-6 157	-6 243	-5 933	-6 184
1	05 0P	ΔE	8.496	9.665	11.212	10.332
			02 205	04 279	25 275	20.002
	$2c^{2}2n^{2}$	ε ₀	-23.325	-24.378	-20.270	-24.034 12.874
	JS JP	ΔE	-14.300	-14.119 0.738	-13.415	-13.874
		<u>E0</u>	-17 284	-19 170	-21 006	
	$3s^23n^4$	C()	-7 112	-6.836	-6 561	N/A
	05 OP	ΔE	0.000	0.000	0.000	N/A
		Ên	-17 959	-20 171	-22 327	N / Δ
S	$3s^13n^5$	C0 E1	-7 653	-7 529	-7 361	N/A
b Js Jp	90 9b	ΔE	10.240	12.490	14.710	N/A
		En	-27 633	-29 260	-31 199	N / A
	$3s^23n^3$	ο ε1	-16.884	-16 152	-15.834	N/A
	05 0P	ΔE	11 863	10.102 11.372	11.067	N/A
		<u>E0</u>	-3 869	-3 759	-3 781	
	$4s^24n^0$	ο ε1	-1.441	-1 601	-1.662	N/A
	то тр	ΔE	0.000	0.000	0.000	N/A
		En	-4 548	-4 359	-4 333	N/A
Ca	$4s^14n^1$	с() С	_1 080	-9.073	_9 100	N/Λ
Ua	dr cr	ΔE	2 401	2.015	2.103 2.170	N/Λ
			0.175	0.001	2.110	11/ A
	. 1 . 0	ε_0	-9.175	-9.031	-9.023	N/A
	$4s^{+}4n^{\vee}$	ε_1	-6.066	-6.249	-6.341	N/A
	ie ip	A	0 100	0.00-	0.000	3 7 / 4

		<u> </u>	0.174	0.155	0 159	<u> </u>
	$4a^{2}4n^{1}$	ε ₀	-9.174	-9.100	-9.108	-0.911
	48 4p	$\epsilon_1 \\ \Lambda F$	-2.138	-2.744	-2.098	-2.071
		ΔE	0.000	0.000	0.000	0.000
	1 0	ε_0	-10.280	-10.394	-10.331	-10.010
Ga	$4s^14p^2$	ε_1	-3.500	-3.532	-3.490	-3.435
		ΔE	6.613	6.639	6.658	6.414
		ε_0	-17.753	-17.988	-17.795	-17.416
	$4s^14p^1$	ε_1	-10.200	-10.293	-10.136	-10.063
		ΔE	13.338	13.427	13.354	13.042
		ε_0	-14.703	-14.681	-14.886	-14.721
	$4s^24p^3$	ε_1	-5.347	-5.343	-5.298	-5.311
		ΔE	0.000	0.000	0.000	0.000
		ε_0	-15.587	-15.700	-15.879	-15.669
As	$4s^14p^4$	ε_1	-5.980	-6.004	-5.972	-5.969
	1	ΔE	9.483	9.517	9.751	9.558
		80	-23.607	-23.555	-23.776	-23.627
	$4s^24p^2$	ε ₀	-13.545	-13.473	-13.424	-13.476
	P	ΔE	9.325	9.292	9.245	9.277
		ε_0	-17.485	-17.480	-17.574	N/A
	$4s^24p^4$	ε_1	-6.661	-6.688	-6.674	N/A
	-	ΔE	0.000	0.000	0.000	N/A
		ε_0	-18.318	-18.421	-18.469	N/A
\mathbf{Se}	$4s^14p^5$	ε_1	-7.268	-7.319	-7.306	N/A
	1	ΔE	10.939	10.947	11.033	N/A
		ε_0	-27.081	-27.065	-27.181	N/A
	$4s^24p^3$	ε_1	-15.589	-15.575	-15.582	N/A
	-	ΔE	11.009	11.021	11.017	N/A
		ε_0	-20.322	-20.487	-20.725	N/A
	$4s^24p^5$	ε_1	-8.007	-8.020	-7.979	N/A
		ΔE	0.000	0.000	0.000	N/A
		ε_0	-21.118	-21.418	-21.637	N/A
Br	$4s^14p^6$	ε_1	-8.598	-8.646	-8.615	N/A
	-	ΔE	12.418	12.620	12.886	N/A
		ε_0	-30.592	-30.736	-31.001	N/A
	$4s^24p^4$	ε_1	-17.636	-17.583	-17.557	N/A
	-	ΔE	12.708	12.694	12.660	N/A

4 Bulk calculations

4.1 Correlation between norm error and transferability

In order to confirm the correlation between the norm error and transferability, we plot the relative errors of the bulk properties of several elements with respect to the norm errors in Fig. S1. The norm error and each error of bulk properties are calculated as

$$\begin{split} \Delta N_{\rm nc} &= \left[\frac{\int_0^{r_c} \left(|\phi_0(r)|^2 - |\psi_0(r)|^2 \right) dr}{\int_0^{r_c} |\psi_0(r)|^2 dr} + \frac{\int_0^{r_c} \left(|\phi_1(r)|^2 - |\psi_1(r)|^2 \right) dr}{\int_0^{r_c} |\psi_1(r)|^2 dr} \right] \times \frac{100}{2}, \\ \Delta V_0 &= \frac{|V_0^{\rm NCPP} - V_0^{\rm NNLP}|}{V_0^{\rm NCPP}} \times 100, \\ \Delta B_0 &= \frac{|B_0^{\rm NCPP} - B_0^{\rm NNLP}|}{B_0^{\rm NCPP}} \times 100, \\ \Delta E_c &= \frac{|E_c^{\rm NCPP} - E_c^{\rm NNLP}|}{E_c^{\rm NCPP}} \times 100. \end{split}$$
(1)

In eqn (1), ψ_l and ϕ_l are the wavefunctions obtained from all-electron calculations and KS-DFT calculations with NNLP, respectively, and V_0 , B_0 , and E_c are the equilibrium volumes, bulk modulus, and cohesive energy calculated by KS-DFT with NCPP and NNLP, respectively. The calculated systems are Li BCC, Be HCP, C diamond, Na BCC, Mg HCP, Al FCC, Si diamond, P orthorhombic, Ar FCC, K BCC, Ca FCC, Ga orthorhombic, Ge diamond, As trigonal, Se trigonal, Br orthorhombic, and Kr FCC.

Figure S 1: The relative errors of the bulk properties of several elements with respect to the corresponding norm errors in atomic calculations. The calculated bulk properties are the equilibrium volume V_0 , the bulk modulus B_0 , and the cohesive energy E_c . The results were calculated by KS-DFT calculations with NCPP and NNLP. The results of NCPP were regarded as the reference. LDA was used as the exchange-correlation functional.

4.2 Band structure calculations

Figure S 2: The band structures of the Si diamond, Na BCC, CaSe RS, MgSe ZB, AlAs ZB, and AlP ZB calculated using KS-DFT with NCPP (red), NNLP (blue), OEPP (black), and BLPS (green). LDA was used as the exchange-correlation functional. The energy (y-axis) is the relative to the Fermi energy.

5 Effect of the cutoff radius on the accuracy in atomic calculations

To test the effect of the cutoff radius r_c on the accuracy in atomic calculations, we generated NNLPs for S with different r_c values (1.1959–2.1959 bohr at the interval of 0.1 bohr). All adjustable parameters to obtain the NNLPs were used as described in Section 1 except for r_c and w_2 . Each w_2 corresponding to the NNLP at the given r_c was optimized by the Bayesian optimization method. We performed atomic calculations using these NNLPs and calculated the errors in eigenvalues as defined in eq (12) in the main text.

Figure S 3: The errors in eigenvalues as a function the cutoff radius. The results were calculated by KS-DFT with NNLPs of S generated with different cutoff radii. LDA was used as the exchange-correlation functional.