Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Electronic Supplementary Information

First Principles Study of Thermoelectric Performance in Pristine and Binary Alloyed Monolayers of Noble Metals

Table S1 DZP basis parameters optimized for bulk fcc structure, where V_{soft} and r_i are parameters for soft-confining potential. Cut-off radii for first and second zeta (radial part of wavefunction) are controlled by E_{shift} and split norm respectively.

Element	V _{soft} (in Ry)	Soft inner radii <i>r</i> _i	Energy Shift	Split norm for $l = 0$	Split norm for $l = 1$
A11	86.15	0.78	$\frac{L_{shift}}{19.64}$	$\frac{101 i = 0}{0.15}$	$\frac{101 i = 1}{0.40}$
Ασ	88.69	0.95	20	0.29	0.33
Cu	191	0.99	20	0.35	0.29
Pt	20	0.95	20	0.15	0.40

Figure S1 Electronic band structures of considered monolayers for (a-d) pristine monolayers, (e-g) non-magnetic alloyed monolayers, and (h-j) magnetic alloyed monolayers. In figures for pristine Pt and magnetic alloys, solid red lines represent bands for \uparrow -spin and dotted green lines for \downarrow -spin states.

Figure S2 Crystal orbital hamiltonian population (COHP) curves for pristine monolayers.

Figure S3 Same as in S2 for alloyed monolayers.

Figure S4 Temperature dependence of Seebeck-coefficient *S* under zero bias for pristine monolayers. Dashed lines in (d) represent the spin-Seebeck co-efficient for Pt monolayer.

Figure S5 Tuning of spin-resolved G and S with chemical potential μ for Pt monolayer at room-temperature.

Figure S6 Calculated electrical conductance G as a function of temperature for AuAg, AuCu, and AgCu monolayers along the ac (zz) direction in left (right) column.

Figure S7 Orbital-resolved and total density of states for (a) AuAg, (b) AuCu, and (c) AgCu monolayers.

Figure S8 Variation of κ_{el} , κ_{ph} , κ_T , and κ_{ph}/κ_T with temperature for $\mu = 0$ in AgCu monolayer along ac (zz) direction in left (right) column.

Figure S9 Same as in S4 for non-magnetic alloyed monolayers.

Figure S10 Temperature dependence of charge G_c and spin $|G_s|$ electrical conductance along ac and zz directions for (a-b) AuPt, (c-d) AgPt, and (e-f) CuPt alloyed monolayers.

Figure S11 Temperature dependence of total κ_{el} and spin-resolved $\kappa_{el,\sigma}$ electronic thermal conductance in AuPt monolayer for transport in ac-direction.

Figure S12 Different thermal transport coefficients: κ_{el} , κ_{ph} , κ_T , and κ_{ph}/κ_T plotted as a function of T in AuPt, AgPt, and CuPt monolayers along ac (a-d) and zz (e-h) directions.

Figure S13 Variation of S_c (a-c) and S_s (d-f) under zero bias for magnetic alloyed monolayers.